

APPROVAL SHEET

MF12E, MF08E, MF06E

±1%, ±5%

Thick Film Triple Power Surge Chip Resistors Size 1206 3/4W, 0805 1/2W, 0603 1/3W Automotive AEC Q200 Compliant

*Contents in this sheet are subject to change without prior notice.

FEATURE

- 1. High reliability and stability
- 2. Reduced size of final equipment
- 3. Ultra high power
- 4. Automotive AEC Q200 compliant
- 5. RoHS compliant and Lead free products

APPLICATION

- · Consumer electrical equipment
- Automotive application
- EDP, Computer application
- Telecom application

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Tin (lead free) alloy.

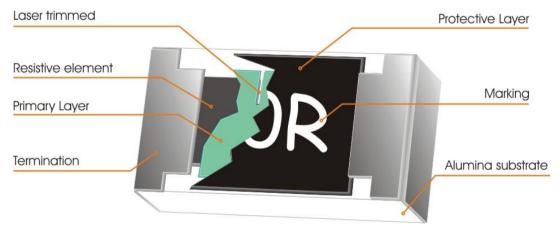
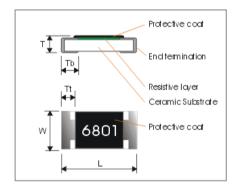


Fig 1. Construction of Chip-R

QUICK REFERENCE DATA

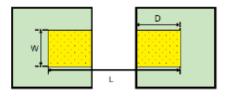
Туре	Size	Power	Max.	Max.	Resistance	Temperature	Resi	stance	Standard
		Rating	RCWV	Overload	Tolerance	Coefficient	Rai	nge	Resistance
		at 70°C		Voltage		(ppm/°C)	Min.	Max.	Values
					±1%(F)	±100ppm	10Ω	1ΜΩ	E96/E24
MF06E	0603	1/3W	75V	125V	±1%(F)	±200ppm	1Ω	9.76Ω	E96/E24
					±5%(J)	±200ppm	1Ω	1ΜΩ	E24
					±1%(F)	±100ppm	10Ω	1ΜΩ	E96/E24
MF08E	0805	1/2W	200V	300V	±1%(F)	±150ppm	1Ω	9.76Ω	E96/E24
					±5%(J)	±200ppm	1Ω	1ΜΩ	E24
MF12E	1206	3/4W	250V	500V	±1%(F)	±100ppm	1Ω	1ΜΩ	E96/E24
.vii 12L	1200	3/477	250 V	3007	±5%(J)	±200ppm	1Ω	1ΜΩ	E24


Note:

Max. Operation Voltage: So called RCWV (Rated Continuous Working Voltage) is determined by

 $RCWV = \sqrt{RatedPower \times Resistance\ Value} \ or\ Max.\ RCWV\ listed\ above,\ whichever\ is\ lower.$

DIMENSIONS (unit: mm)


Part No	MF12E	MF08E	MF06E	
L	3.10 ± 0.10	2.00 ± 0.10	1.60 ± 0.10	
W	1.60 ± 0.10	1.25 ± 0.10	0.80 ± 0.10	
Tt	0.50 ± 0.25	0.40 ± 0.20	0.30 ± 0.20	
Tb	0.50 ± 0.25	0.40 ± 0.20	0.30 ± 0.20	
t	0.55 ± 0.10	0.50 ± 0.10	0.45 ± 0.10	

Recommend Solder Pad Dimensions:

Туре	W	D	L
MF06E	0.90	1.00	3.00
MF08E	1.30	1.15	3.50
MF12E	1.80	1.30	4.70

Unit:mm

MARKING

E24 $\pm 5\%$: 3 Digits marking to identify the resistance value 0603/0805/1206

$$301 \rightarrow 30 \times 10^{1} = 300 \Omega$$

E24/E96 ±1% : 4 Digits marking to identify the resistance value 0805/1206

E24 ±1% : 3 Digits marking to identify the resistance value 0603

$$222 \rightarrow 22 \times 10^{2} = 2.2 \text{ K}\Omega$$

E96 ±1% : 3 Digits marking to identify the resistance value 0603

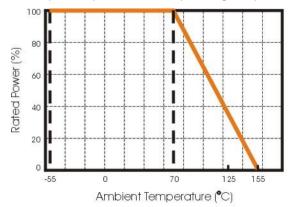
01B
$$\rightarrow$$
 Refer 0603 marking table = 1 K Ω

■ 0603 1% Marking Table (Table 1)

Code	E48	E96									
01	100	100	25	178	178	49	316	316	73	562	562
02		102	26		182	50		324	74		576
03	105	105	27	187	187	51	332	332	75	590	590
04		107	28		191	52		340	76		604
05	110	110	29	196	196	53	348	348	77	619	619
06		113	30		200	54		357	78		634
07	115	115	31	205	205	55	365	365	79	649	649
08		118	32		210	56		374	80		665
09	121	121	33	215	215	57	383	383	81	681	681
10		124	34		221	58		392	82		698
11	127	127	35	226	226	59	402	402	83	715	715
12		130	36		232	60		412	84		732
13	133	133	37	237	237	61	422	422	85	750	750
14		137	38		243	62		432	86		768
15	140	140	39	249	249	63	442	442	87	787	787
16		143	40		255	64		453	88		806
17	147	147	41	261	261	65	464	464	89	825	825
18		150	42		267	66		475	90		845
19	154	154	43	274	274	67	487	487	91	866	866
20		158	44		280	68		499	92		887
21	162	162	45	287	287	69	511	511	93	909	909
22		165	46		294	70		523	94		931
23	169	169	47	301	301	71	536	536	95	953	953
24		174	48		309	72		549	96		976

 Code
 A
 B
 C
 D
 E
 F
 G
 H
 X
 Y
 Z

 Multiplier
 10 0
 10 1
 10 2
 10 3
 10 4
 10 5
 10 6
 10 7
 10 -1
 10 -2
 10 -3


FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E96 & E24 series for resistors with a tolerance of $\pm 1\%$, $\pm 5\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063".

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

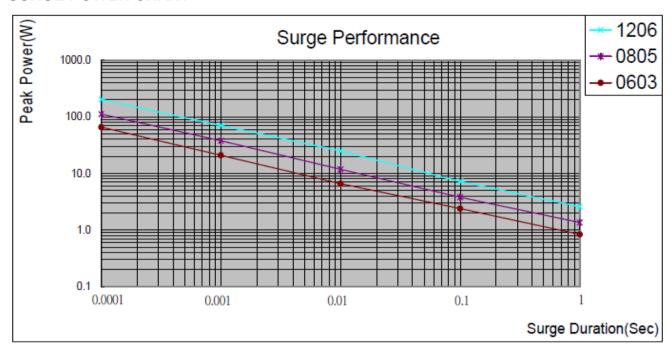
SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.



Fig 3. Infrared soldering profile for Chip Resistors


CATALOGUE NUMBERS

The resistors have a catalogue number starting with .

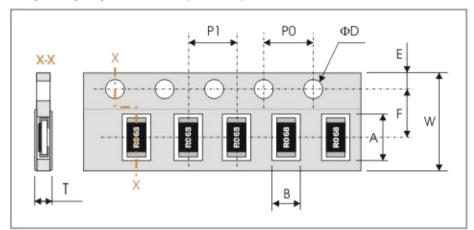
MF12	E	1202	F	Т	L
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code
MF12: 1206 MF08: 0805 MF06: 0603	E : Triple Power + Surge	5%, E24: 2 significant digits followed by no. of zeros $100\Omega = 101_{-}$	F: ± 1% J: ± 5%	T: 7" Reeled taping	L = Sn base (lead free)
		10KΩ = 103 1%, E24+E96: 3 significant digits followed by no. of zeros 100Ω = 1000 37.4KΩ = 3742			

Reeled tape packaging: 8mm width paper taping 5,000pcs per 7" reel.

SURGE POWER CHART

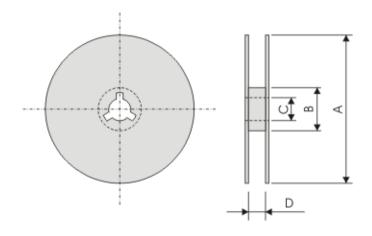
TEST AND REQUIREMENTS (AEC Q200)

8. Reliability Performance (AEC-Q200)


	· , , , , , , , , , , , , , , , , , , ,	T
Test Item	Specification	Test Method (AEC-Q200. IEC 60115)
*DC	F: ±1%; J: ±5%	AEC-Q200 TABLE 7.1
Resistance		IEC 60115-1 / JIS C 5201-1 , Clause 4.5 Measure the resistance Value.
Short Time	$J: \Delta R \leq \pm (2\% + 0.1\Omega)$	IEC 60115-1, Clause 4.13
Overload	$F: \Delta R \leq \pm (1\% + 0.05\Omega)$	5 x rated power for 5 seconds
High	$J: \Delta R \le \pm (3\% + 0.1\Omega)$	AEC-Q200 TABLE 7.3
Temperature	$F: \Delta R \leq \pm (1\% + 0.05\Omega)$	1000 hrs. @ T=125°ℂ. Unpowered.
Exposure		Measurement at 24 ±2 hours after test
(Storage)		conclusion.
*Temperature	$J: \Delta R \leq \pm (1\% + 0.1\Omega)$	AEC-Q200 TABLE 7.4
Cycling	$F: \Delta R \leq \pm (0.5\% + 0.05\Omega)$	1000 Cycles (-55°C to +125°C).
	No mechanical damage.	Measurement at 24±2 hours after test conclusion.

Moisture	$\triangle R \le \pm (0.5\% \pm 0.05\Omega)$	AEC-Q200 TABLE 7.6
Resistance		Test 65°C/80~100%RH/10Cycles.
		Measurement at 24±2 hours after test conclusion.
		(t=24hrs/cycle).
Biased	△R≦ ±(1%+0.05Ω)	AEC-Q200 TABLE 7.7
Humidity		1000 hours 85℃/85%RH.
		10% of operating power.
		Measurement at 24 ±2 hours after test conclusion.
Operational	△R≦ ±(1%+0.05Ω)	AEC-Q200 TABLE 7.8
Life		Test 1000hr @ TA=125℃ at specified rated power.
		Measurement at 24±2 hours after test conclusion.
External Visual	No visual damage and refer	AEC-Q200 TABLE 7.9
	PDC marking code.	Inspect device construction, marking and
		workmanship.
Physical	Within the spec.	AEC-Q200 TABLE 7.10
Dimension		Verify physical dimensions to the applicable device
		detail specification.
Mechanical	Within product specification	AEC-Q200 TABLE 7.13
Shock	tolerance and no visible	Test Peak value:100g's,Wave:Hail-sine,
	damage.	Duration:6ms,Velocity:12.3ft/sec.
Vibration	△R≦ ±(1%+0.05Ω)	AEC-Q200 TABLE 7.14
	No mechanical damage.	5 g's for 20 min., 12 cycles each of 3 orientations.
		Test from 10-2000 Hz.
Resistance to	$\Delta R \le \pm (0.5\% + 0.05\Omega)$	AEC-Q200 TABLE 7.15
Solder Heat	No mechanical damage.	Solder dipping @ 270°C±5°C for 10sec.±1sec.
Thermal Shock	$\Delta R \le \pm (0.5\% + 0.05\Omega)$	AEC-Q200 TABLE 7.16
	No mechanical damage.	-55 to 155°C / dwell time 15min/ Max transfer time
		20sec/ 300cycles.
ESD	$\Delta R \le \pm (1\% + 0.1\Omega)$	AEC-Q200-002
	No mechanical damage.	Test contact min. 1KV.
Solder Ability	Over 95% of termination	AEC-Q200 TABLE 7.18
Solder Ability	must be covered with	a)Baking 155°C 4H, dipping 235°C 5s
	solder.	b)Steam 8H, dipping 215°C 5s
	SOIGEI.	
		c)Steam 8H, dipping 260°C 7s

Flammability	Refer UL-94.	AEC-Q200 TABLE 7.20
		UL-94 V-0 or V-1 are acceptable
Board Flex	$\Delta R \le \pm (0.5\% + 0.05\Omega)$	AEC-Q200 TABLE 7.21
	No mechanical damage.	Bending 2mm 2512.2010.1210.1206,
		3mm 0805.0603.
Terminal	No mechanical damage	AEC-Q200 TABLE 7.22
Strength		Force 1.8 Kg for 60 seconds.
Temperature	Within the spec.	IEC 60115-1, Clause 4.8
Coefficient of		T_1 T_2
Resistance		Test temperature : 25°C ~ -55°C
(TCR)		25℃~+155℃
		$TCR(ppm/^{\circ}C) = (R_2-R_1)/R_1 \times 1 / (T_2-T_1) \times 10^6$


PACKAGING

Paper Tape specifications (unit :mm)

Component Size / Series	W F		E		P0		ΦD			
MF12E	8.00±0.30	3	3.50±0.20	1.75±0.10		±0.10 4.00±0.10		Ф1.50 ^{+0.1} _{-0.0}		
MF08E	8.00±0.30	3	3.50±0.20	50±0.20 1.75±0		4.00±0.10	0	Ф1.50 ^{+0.1}		
MF06E	8.00±0.30	3	3.50±0.20	3.50±0.20 1.75±		0.10 4.00±0.1		Ф1.50 ^{+0.1}		
Component Size / Series	А		В			P1		Т		
MF12E	3.60±0.20		2.00±0.20		4.0	0±0.10		Max. 1.0		
MF08E	2.40±0.20		1.65±0.20		4.0	4.00±0.10		Max. 1.0		
MF06E	1.90±0.20	1.90±0.20		1.10±0.20		.20 4.00±0		0±0.10		Max. 0.8

Reel dimensions

Symbol	А	В	С	D
(unit : mm	n) Φ178.0	±2.0 Φ60.0:	±1.0 13.0±0	.2 9.0±0.5

Taping Quantity

- Chip resistors 5,000 pcs/reel

APPROVAL SHEET

MF10E, MF20E, MF25E

 $\pm 1\%$, $\pm 5\%$ $1\Omega \sim 1M\Omega$, Jumper

Thick film High Power Surge Chip Resistors

Size 1210, 2010, 2512

Automotive Grade & Anti-Sulfuration

*Contents in this sheet are subject to change without prior notice.

FEATURE

- 1. Automotive grade AEC Q-200 compliant
- 2. High reliability 1% stability
- 3. 100% CCD inspection
- 4. RoHS compliant and Halogen free and Lead free products
- 5. High power rating up to 2W
- 6. Anti-sulfur against ASTM B-809 50'C, 90% RH, 1000hrs

APPLICATION

- 1. High accuracy dc-power supply
- 2. Digital multi-meter
- 3. Telecommunication
- 4. Computer
- 5. Automotive industry
- 6. Medical and military equipment

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Tin (lead free) alloy.

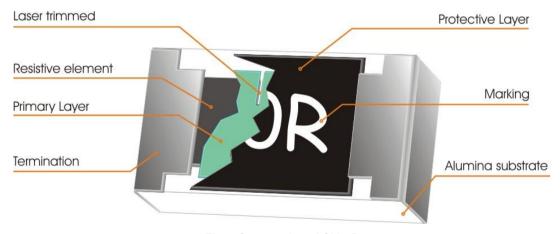
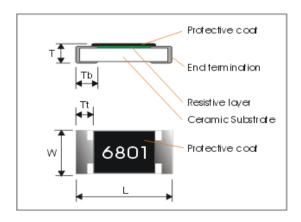


Fig 1. Construction of Chip-R

QUICK REFERENCE DATA

Туре	Size	Power Rating	Max. RCWV	Max. Overload	Resistance Tolerance	Coefficient	Resis Rai	stance nge	Standard Resistance
		at 70℃		Voltage		(ppm/℃)	Min.	Max.	Values
MF10E	1210	3/4W	250V	500V	±1%(F)	±100ppm	1Ω	1ΜΩ	E96/E24
IVIF TUE	1210	3/477	250 V	300 V	±5%(J)	±200ppm	1Ω	1ΜΩ	E24
MF20E	2010	1W	200V	400V	±1%(F)	±100ppm	1Ω	1ΜΩ	E96/E24
IVIF20E	2010	1 V V	200 V	400 V	±5%(J)	±200ppm	1Ω	1ΜΩ	E24
MF25E	2512	2W	300V	600V	±1%(F)	±100ppm	1Ω	1ΜΩ	E96/E24
IVIFZOE	2012	Z V V	3007	0000	±5%(J)	±200ppm	1Ω	1ΜΩ	E24

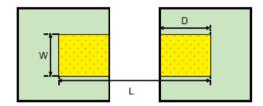
Туре	Size	Description	Max. Rated Current	Resistance
MF10E	1210	Zero Ohm , Jumper	≦ 4A	$<$ 20m Ω
MF20E	2010	Zero Ohm, Jumper	≦ 6A	$<$ 20m Ω
MF25E	2512	Zero Ohm , Jumper	≦ 6 A	$<$ 20m Ω


Note: RCWV=(PxR)^{1/2} or Max. RCWV listed above, whichever is lower.

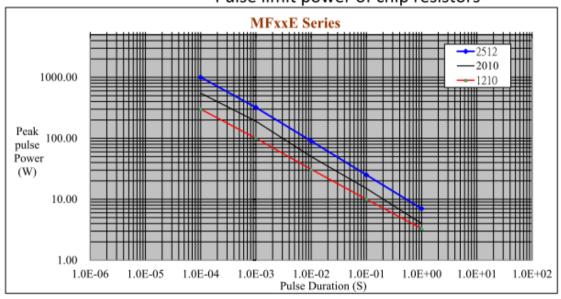
RCWV: Working Voltage (V), P: Rated Power (W), R: Resistance Value (Ω)

2512 2W loading with total solder-pad and trace size of 300 mm²

DIMENSIONS (unit: mm)


Part No	MF10E	MF20E	MF25E
L	3.10 ± 0.10	5.00 ± 0.20	6.40 ± 0.20
W	2.60 ± 0.10	2.50 ± 0.20	3.10 ± 0.20
Т	0.55 ± 0.10	0.60 ± 0.10	0.60 ± 0.15
Tt	0.50 ± 0.25	0.65 ± 0.25	0.60 ± 0.25
Tb	0.50 ± 0.25	0.60 ± 0.25	1.80 ± 0.25

Recommend Solder Pad Dimensions:


Туре	W	D	L
MF10E	3.00	1.30	4.70
MF20E	3.00	1.50	6.80
MF25E	3.70	2.45	7.60

PULSE POWER CHART

Walsin Technology Corporation Pulse limit power of chip resistors

MARKING

Size \ Nr. Of digit of code\ tolerance	±5%	±1%	
2512 (6432)	3-digits marking	4-digits marking	
2010 (5025)	3-digits marking	4-digits marking	
1210 (3225)	3-digits marking	4-digits marking	

4-digits marking $(\pm 1\% : 2512/2010/1210)$

Each resistor is marked with a four digits code on the protective coating to designate the nominal resistance value.

Example

RESISTANCE	10Ω	12Ω	100Ω	6800Ω	47000Ω
3-digits marking (1206 & 0805 & 0603 ±5%)	100	120	101	682	473
4-digits marking	10R0	12R0	1000	6801	4702

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E96&E24 series for resistors with a tolerance of $\pm 1\%, \pm 5\%$. The values of the E96/E24 series are in accordance with "IEC publication 60063".

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

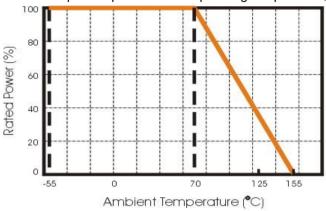


Fig.2 Maximum dissipation in percentage of rated power As a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

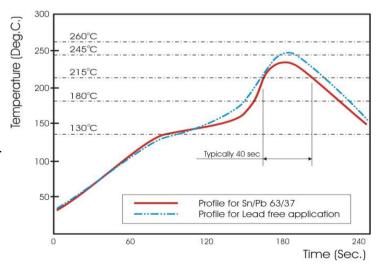


Fig 3. Infrared soldering profile for Chip Resistors

CATALOGUE NUMBERS

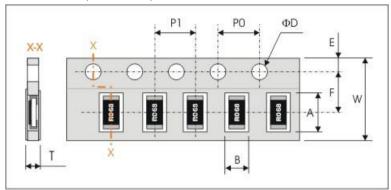
The resistors have a catalogue number starting with:

MF25	E	1002	F	Т	L
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code
MF10: 1210	E :Power Surge	5%, E24:	J : ±5%	T: 7" Reeled	L = Sn base
MF20: 2010	1210 size = 3/4W	2 significant digits followed by	F:±1%	taping.	(lead free)
MF25: 2512	2010 size = 1W	No. of zeros	P: Jumper		
	2512 size = 2W	e.g.: 30hm =3R0 100hm =100 56Kohm =563			
		1%, E24+E96:			
		3 significant digits followed by No. of zeros			
		100Ω =1000			
		37.4 K $\Omega = 3742$			

■ Reeled tape packaging : 8mm width paper taping 5000pcs per 7" reel for 1210 size.

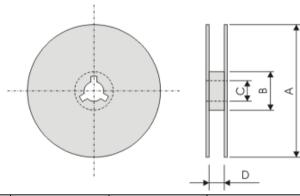
■ Reeled tape packaging : 12mm width plastic taping 4000pcs per 7" reel for 2010, 2512 sizes.

TEST AND REQUIREMENTS (refer to AEC Q200)


TEST	DDOCEDUDE / TEST METHOD	REQUIREMENT		
IESI	PROCEDURE / TEST METHOD	Resistor		
Electrical Characteristics JISC5201-1: 1998 Clause 4.8	- DC resistance values measurement - Temperature Coefficient of Resistance (T.C.R) Natural resistance change per change in degree centigrade. $R_2 - R_1$	Within the specified tolerance Refer to "QUICK REFERENCE DATA"		
Short time overload IEC 60115-1, Clause 4.13	$\frac{R_2-R_1}{R_1(t_2-t_1)}\times 10^6 \ \ (\text{ppm/°C}) \qquad t_1:20\text{°C+5°C-1°C}$ $R_1: \text{Resistance at reference temperature}$ $R_2: \text{Resistance at test temperature}$ $5\times \text{Rated power for 5 seconds}$	J: Δ R/R max. \pm (2.0%+0.1 Ω) F: Δ R/R max. \pm (1.0%+0.05 Ω) no visible damage		
Resistance to soldering heat (R.S.H) MIL-STD-202 Method 210	Un-mounted chips completely immersed for 10±1second in a SAC solder bath at 270°C±5°C	J: Δ R/R max. \pm (1.0%+0.1 Ω) F: Δ R/R max. \pm (0.5%+0.05 Ω) no visible damage		
Solderability J-STD-002	a) Bake the sample for 155°C dwell time 4hrs/ solder dipping 235°C/ 5sec. b) Steam the sample dwell time 8 hour/ solder dipping 215°C/ 5sec. c) Steam the sample dwell time 8 hour/ solder dipping 260°C/ 7sec.	tinning and no visible damage		
Temperature cycling JESD22 Method JA-104	1000 cycles, -55°C ~ +125°C, dwell time 30min maximum. Measurement at 24±2 hours after test conclusion.	J: Δ R/R max. \pm (1.0%+0.1 Ω) F: Δ R/R max. \pm (0.5%+0.05 Ω) no visible damage		
Moisture Resistance MIL-STD-202 Method 106	65±2°C, 80~100% RH, 10 cycles, 24 hours/ cycle	J: Δ R/R max. \pm (1.0%+0.1 Ω) F: Δ R/R max. \pm (0.5%+0.05 Ω) no visible damage		
Bias Humidity MIL-STD-202 Method 103	1000+48/-0 hours; 85°C, 85% RH, 10% of operation power. Measurement at 24±2 hours after test conclusion.	J: Δ R/R max. \pm (3.0%+0.1 Ω) F: Δ R/R max. \pm (1.0%+0.05 Ω) no visible damage		
Operational Life MIL-STD-202 Method 108	1000+48/-0 hours; 35% of operation power, 125±2°C Measurement at 24±2 hours after test conclusion.	J: Δ R/R max. \pm (3.0%+0.1 Ω) F: Δ R/R max. \pm (1.0%+0.05 Ω) no visible damage		
High Temperature Exposure MIL-STD-202 Method 108	1000+48/-0 hours; without load in a temperature chamber controlled 125±3°C	J: Δ R/R max. \pm (3.0%+0.1 Ω) F: Δ R/R max. \pm (1.0%+0.05 Ω) no visible damage		
Board Flex AEC-Q200-005	Resistors mounted on a 90mm PCB (FR4), bending once 2mm for 2512,2010,1210,1206, 3mm for 0805, 0603.	J: Δ R/R max. \pm (1.0%+0.1 Ω) F: Δ R/R max. \pm (0.5%+0.05 Ω) no visible damage		
Terminal strength AEC-Q200-006	Force: 1.8Kg, Test time: 60±1sec.	No remarkable damage or removal of the terminations		
Thermal shock MIL-STD-202 Method 107	Test –55 to 155 $^{\circ}\text{C}$ / dwell time 15min/ Max transfer time 20sec , 300cycles	J: Δ R/R max. \pm (1.0%+0.1 Ω) F: Δ R/R max. \pm (0.5%+0.05 Ω) no visible damage		

ESD AEC-Q200-002	Test contact min.1.0KV	Δ R/R max. \pm (1.0%+0.1 Ω) No visible damage
Mechanical Shock IL-STD-202 Method 213	Test ½ Sine Pulse, Peak value: 100g, normal duration: 6ms, Velocity change:12.3ft/sec. Three shocks in each direction, total 18 shocks.	
Vibration MIL-STD-202 Method 204	Test 5g's for 20 min., 12 cycles each of 3 orientations.	No visible damage
External Visual MIL-STD-883 Method 2009	Electrical test not required. Inspect device construction, marking and workmanship	No visual damage and refer WTC marking code.
Physical Dimension JESD22 Method JB-100	Verify physical dimensions(L, W, T, Tb, Tt)	Within the specified tolerance for WTC.

PACKAGING


Paper Tape specifications (unit :mm)

Series No.	А	В	W	F	E
MF25E	6.70±0.20	3.50±0.20	12.00±0.30	5.50±0.10	1.75±0.10
MF20E	5.50±0.20	2.80±0.20	12.00±0.30	5.50±0.10	1.75±0.10
MF10E	3.60±0.20	3.00±0.20	8.00±0.30	3.50±0.20	1.75±0.10

Series No.	P1	P0	ΦD	Т
MF25E				Max. 1.2
MF20E	4.00±0.10	4.00±0.10	Φ 1.50 $^{+0.1}_{-0.0}$	Max. 1.2
MF10E				Max. 1.0

Reel dimensions

Symbol	Α	В	С	D
12 mm tape	Ф178.0±2.0	Φ60.0±1.0	13.0±0.5	13.8±1.5
8 mm tape	Φ178.0±2.0	Φ60.0±1.0	13.0±0.5	10.0±1.5

STORAGE & HANDLING

- ... Products are recommended to be used up within one year as ensured shelf life. Check solderability in case shelf life extension is needed.
- ... To store products with following condition:

 Temperature:5 to 40°C; Humidity: 20 to 70% relative humidity.

Precaution for use

The AEC-Q200 series resistor is mainly used on general automotive equipment without safety considerations.

Please contact our company in advanced if you intend to use resistor for designing the equipment which may

damage itself and the safety of third party. If necessary, please consider to add the protect circuit in devising

process and obtaining fully safety evaluation. The contents of the acknowledgment is only used for our parent

company, marketing subsidiaries and official marketing agents who purchase our products. Not applicable for the

other non-official channels.