

APPROVAL SHEET

SA04X, SA06X

±1%, ±5%, Convex Type

Thick film General Purpose Chip-R Array Size 0402x4, 0603x4 (8P4R)
Automotive & Anti-Sulfuration

*Contents in this sheet are subject to change without prior notice.

FEATURE

- 1. High reliability and stability
- 2. Sulfuration resistant
- 3. Automotive grade with AEC Q-200 compliant
- 4. Higher component and equipment reliability
- 5. EU RoHS compliant and Lead free products
- 6. Anti-Sulfuration ASTM B-809-95 105'C, 1000hrs compliant

APPLICATION

- Consumer electrical equipment
- EDP, Computer application
- Telecom
- Automotive application

DESCRIPTION

The resistors array is constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to within tolerance by laser cutting of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Tin (Pb free) solder alloy.

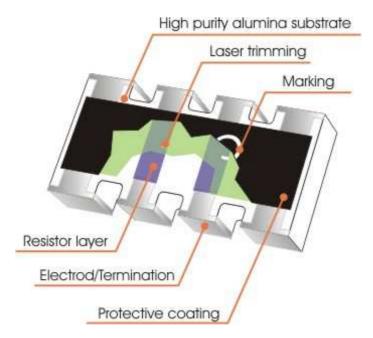
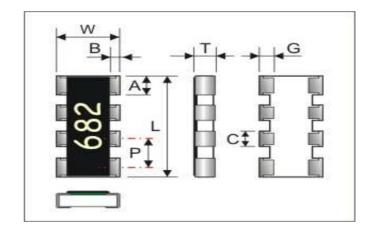


Fig 1. Consctruction of a Chip-R array(convex Type)

QUICK REFERENCE DATA

Item	General Specification			
Series No.	SA04X	SA06X		
Size	0402x4 (1005x4)	0603x4 (1608x4)		
Termination construction	Convex	Convex		
Resistance Tolerance	±5%, ±1%	±5%, ±1%		
Resistance Range	10 Ω ~ 1M Ω , Jumper	1 Ω ~ 1M Ω , Jumper,		
TCR (ppm/°C)	<10Ω: -200 ~ +400			
	10Ω - $1M\Omega$: $\leq \pm 300$	10Ω - 1MΩ: \leq ± 200		
Max. dissipation at T _{amb} =70°C	1/16 W	1/10 W		
Max. Operation Voltage	50V	50V		
Max. overload voltage	100V 100V			
Operation temperature	-55 ~ +155'C			


Note:

- 1. Climatic category refer to IEC 60068
- 2. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 3. Max. Operation Voltage: So called RCWV (Rated Continuous Working Voltage) is determined by

 $RCWV = \sqrt{Rated Power \times Resistance Value}$ or Max. RCWV listed above, whichever is lower.

DIMENSIONS (unit:mm)

	SA04X	SA06X
L	2.00 ± 0.10	3.20 ± 0.10
W	1.00 ± 0.10 1.60 ± 0.10	
Т	0.45 ± 0.10	0.50 ± 0.10
Р	0.50 ± 0.05	0.80 ± 0.10
Α	A 0.40 ± 0.10 0.60 ± 0.10	
В	0.20 ± 0.10	0.30 ± 0.10
С	0.30 ± 0.05	0.40 ± 0.10
G	G 0.25 ± 0.10 0.30 ± 0.20	

MARKING

3-digits marking for E24 series $\pm 1\%$, $\pm 5\%$ products.

No marking for chip resistors array E96 series resistance.

Each resistor is marked with a three digits code on the protective coating to designate the nominal resistance value.

Example

Resistance	10Ω	100Ω	6800Ω	47000Ω
Marking code	100	101	682	473

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of $\pm 5\%$, The values of the E24 series are in accordance with "IEC publication 60063"

Standard values of nominal resistance are taken from the E24/E96 series for resistors with a tolerance of $\pm 1\%$, The values of the E24/E96 series are in accordance with "IEC publication 60063"

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2.

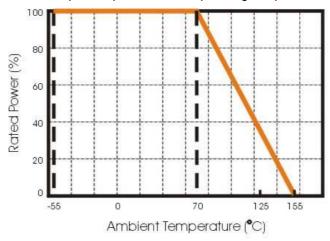
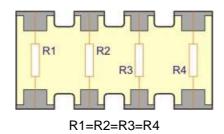



Figure 2. Maximum dissipation in percentage of rated power As a function of the ambient temperature

CONSTRUCTION

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

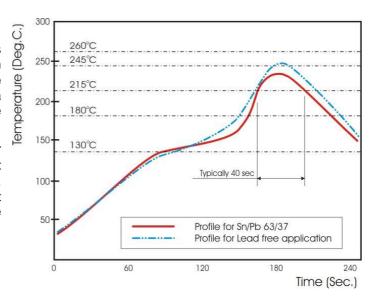


Fig 3. Infrared soldering profile for Chip Resistors array

CATALOGUE NUMBERS

The resistors have a catalogue number starting with .

SA04	Х	472_	J	Т	L
Automotive code SA04: 0402 x 4 SA06: 0603 x 4	Type code X: Convex	Resistance code 5%, E24 : 2 significant digits followed by no. of zeros and a blank	Tolerance F:±1% J:±5% P:Jumper	Packaging code T: 7" Reeled taping Q: 10" Reeled taping G: 13" Reeled taping B: Bulk	Special code L = Lead free
		220Ω =221_ ("_" means a blank) 1%, E24+E96: 3 significant digits followed by no. of zeros 102Ω =1020 37.4KΩ =3742			

^{*} Anti-sulfur test conditions: ASTM B-809-95 105'C, 1000 hrs, criteria: within ±1%!

SA06X, Reeled tape packaging : 8mm width paper taping 5000pcs per reel.

SA04X, Reeled tape packaging : 8mm width paper taping 10,000pcs per reel.

^{* 100%} CCD visual inspection to guarantee visual quality!

TEST AND REQUIREMENTS

Essentially all tests are carried out according to the schedule of IEC publication 115-8, category LCT/UCT/56(rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also meets the requirements specified by EIA, EIAJ and JIS.

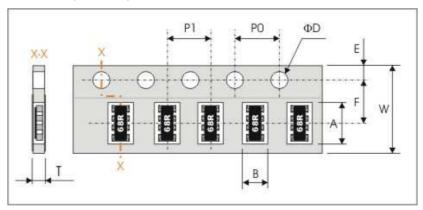
The tests are carried out in accordance with IEC publication 68, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to IEC 60068-1, subclause 5.3. Unless otherwise specified, the following value supplied:

Temperature: 15°C to 35°C. Relative humidity: 45% to 75%.

Air pressure: 86kPa to 106 kPa (860 mbar to 1060 mbar). All soldering tests are performed with midly activated flux.

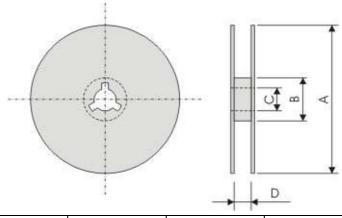
TEOT	DROOFDURE / TEST METUOD	REQUIREMENT		
TEST	PROCEDURE / TEST METHOD	Resistor	0Ω	
Electrical Characteristics JISC5201-1: 1998	 DC resistance values measurement Temperature Coefficient of Resistance (T.C.R) Natural resistance change per change in degree centigrade. 	Within the specified tolerance Refer to "QUICK REFERENCE DATA"		
Clause 4.8	$\frac{R_2-R_1}{R_1(t_2-t_1)}\times 10^6 \text{ (ppm/°C)} t_1:20\text{C}+5\text{C}-1\text{C}$ R ₁ : Resistance at reference temperature R ₂ : Resistance at test temperature			
Resistance to soldering heat(R.S.H) MIL-STD-202 method 201	Un-mounted chips completely immersed for 10±1second in a SAC solder bath at 270°C±5°C	Δ R/R max. \pm (0.5%+0.05 Ω)	<50mΩ	
Solderability J-STD-202	 a) Bake the sample for 155℃ dwell time 4hrs/ solder dipping 235℃/5sec. b) Steam the sample dwell time 1 hour/ solder dipping 260℃/7sec. 	95% coverage min., good tinning and no visible damage		
Temperature cycling JESD22 method JA-104	1000 cycles, -55°C ~ +155°C, dwell time 5~10min	Δ R/R max. \pm (0.5%+0.05 Ω)	< 50mΩ	
Moisture Resistance MIL-STD-202 method 106	65±2°C, 80~100% RH, 10 cycles, 24 hours/ cycle	Δ R/R max. \pm (0.5%+0.10 Ω)	< 50mΩ	
Bias Humidity MIL-STD-202 method 103	1000+48/-0 hours; 85°C, 85% RH, 10% of operation power	Δ R/R max. \pm (1.0%+0.05 Ω) No visible damage	<50mΩ	
Operational Life MIL-STD-202 method 108	1000+48/-0 hours; 35% of operation power, 125±2°C	Δ R/R max. \pm (1.0%+0.05 Ω) No visible damage	< 50mΩ	
High Temperature Exposure MIL-STD-202 method 108	1000+48/-0 hours; without load in a temperature chamber controlled 125±3°C	Δ R/R max. \pm (1.0%+0.05 Ω) No visible damage	<50mΩ	

TEST	PROCEDURE / TEST METHOD	REQUIREMENT		
1231	PROCEDURE / TEST METHOD	Resistor	0Ω	
Board Flex	Resistors mounted on a 90mm glass epoxy resin PCB(FR4),	Δ R/R max. ±(1.0%+0.05 Ω).	<50mΩ	
AEC-Q200-005	bending once 2mm for 10sec	No visible damage		
Terminal strength	Pressurizing force: 1Kg, Test time: 60±1sec.	No remarkable damage or re	emoval of	
AEC-Q200-006		the terminations		
Vibration	Test 5g's for 20min., 12 cycles each of 3 orientations	Δ R/R max. ±(1.0%+0.05 Ω)		
MIL-STD-202		No visible damage	<50mΩ	
method 204				
Thermal shock	Test -55 to 125°C/ dwell time 15min/ Max transfer time	Δ R/R max. \pm (0.5%+0.05 Ω)		
MIL-STD-202	20sec	No visible damage	$<$ 50m Ω	
method 107	300cycles			
ESD	Test contact 1.0KV	Δ R/R max. \pm (1.0%+0.05 Ω)	.F0m0	
AEC-Q200-002		No visible damage	<50mΩ	


TEST CONDITION FOR JUMPER (0 $\Omega)$

Item	SA04X	SA06X
Power Rating At 70°C	1/16W	1/10W
Resistance	MAX.50m $Ω$	MAX.50m $Ω$
Rated Current	1A	1A
Peak Current	1.5A	3A
Operating Temperature	-55~155°C	-55~155°C

PACKAGING


Paper Tape specifications (unit :mm)

Symbol	А	В	W	F	E
SA06X	3.60±0.20	2.00±0.20	8.00±0.30	3.50±0.20	1.75±0.10
SA04X	2.20±0.20	1.20±0.20	8.00±0.30	3.30±0.20	1.75±0.10

Symbol	P1	P0	ΦD	Т
SA06X	4.00±0.10	4.00±0.10	Φ 1.50 $^{+0.1}_{-0.0}$	Max. 1.0
SA04X	2.00±0.05	4.00±0.10	$\Psi 1.50_{-0.0}$	Max. 0.6

Reel dimensions

Symbol	А	В	С	D
7" REEL	Φ178.0±2.0	Φ60.0±1.0	13.0±0.2	9.0±0.5