

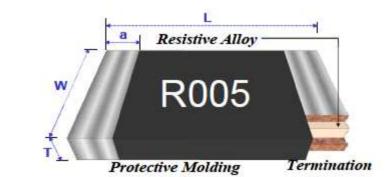
WW25A_J

±5%, ±1%

Metal low ohm current sensing chip resistors Size 2512 (6432) 3W Automotive AEC Q200 Compliant RoHS exemption free and Halogen free

*Contents in this sheet are subject to change without prior notice.

FEATURE


- 1. Metal low ohm and High power low TCR performance
- 2. Automotive grade AEC Q-200 compliant
- 3. 100% CCD inspection
- 4. RoHS exemption free and Halogen free
- 5. Inductance less than 1.0nH

APPLICATION

- Power supply
- PDA
- Digital meter
- Computer
- Automotives
- Battery charger
- DC-DC power converter

DESCRIPTION

The resistors are constructed in a high grade low resistive metal body. The resistive layer is covered with a protective coat and printed a resistance marking code over it. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is Tin (lead-free) soder alloy.

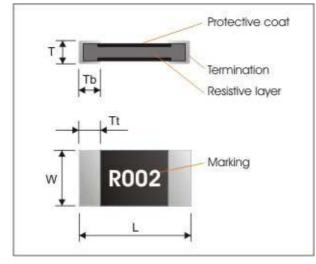

Item	Protective Molding	Resistive Element	Internal Terminal	External Terminal
Material	Resin	Alloy Metal	Copper	Solder

Fig 1. Construction of Chip-R

QUICK REFERENCE DATA

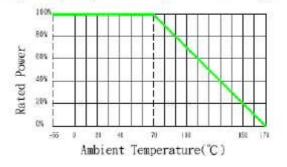
Item	General Specification		
Series No.	WW25A		
Size code	2512 (6432)		
Resistance Tolerance	±5%, ±1%		
Resistance Range	5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 25, 30, 33, 35, 40, 50m Ω		
TCR (ppm/°C)	5, 6, 8, 10mΩ: ≤±70 ppm/°C		
	12, 14, 15, 16, 18, 20, 25, 30, 33, 35, 40, 50mΩ: ≤ ±50 ppm/°C		
Max. dissipation at T _{amb} =70°C	3 W		
Operation temperature	- 55 ~ +170'C		

MECHANICAL DATA

Symbol	Dimensions (mm)	
L	6.20±0.20	
W	3.25±0.20	
т	0.65±0.20	
Tt	0.80±0.20	
Tb	0.80±0.20	

MARKING

Each resistor is marked with a four-digit code on the protection coat to define resistance value. Example:


 $R025 = 0.025\Omega$, $R050 = 0.05\Omega$

FUNCTIONAL DESCRIPTION

Derating curve

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

Operating Temperature Range: -55 to +170 deg.C

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

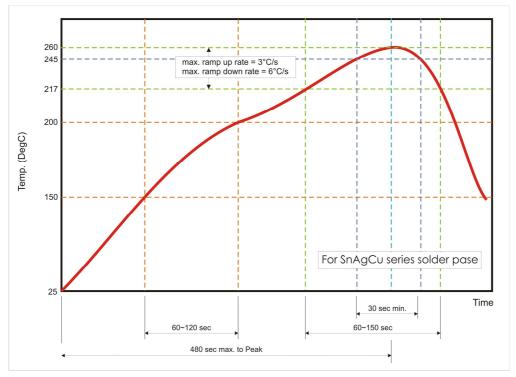


Fig 3. Infrared soldering profile for Chip Resistors WW25A

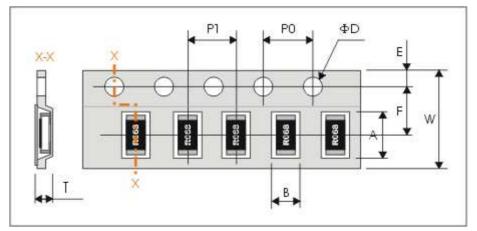
CATALOGUE NUMBERS

The resistors have a catalogue number starting with

WW25	Α	R025	F	т	L	J
Size code WW25 : 2512	Type code A : 3W Metal sensing type	Resistance code $0.025\Omega = R025$	Tolerance J : ±5% F : ±1%	Packaging code T : 7" reeled in tape	Termination code L = Sn base (lead free)	Special code J = Automotive grade AEC Q-200 compliant

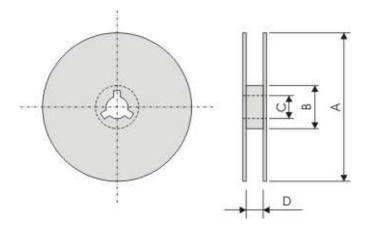
Reeled tape packaging : 12mm width plastic emboss taping 4,000pcs per reel.

TEST AND REQUIREMENTS (AEC Q-200)


TEST	PROCEDURE / TEST METHOD	REQUIREMENT	
IESI		Resistor	
Electrical Characteristics	 DC resistance values measurement Temperature Coefficient of Resistance (T.C.R) Natural resistance change per change in degree centigrade. 	Within the specified tolerance Refer to "QUICK REFERENCE DATA"	
Clause 4.8	$\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)} t_1 : 20^{\circ} \text{C} + 5^{\circ} \text{C} - 1^{\circ} \text{C}$		
	R_1 : Resistance at reference temperature R_2 : Resistance at test temperature		
Resistance to soldering	Un-mounted chips completely immersed for 10±1second in a	J: $\Delta R/R$ max. $\pm (1.0\% + 0.5m\Omega)$	
heat (R.S.H)	SAC solder bath at 270°C ±5°C	F: Δ R/R max. ±(0.5%+0.5m Ω)	
MIL-STD-202 method 210		no visible damage	
Solderability AEC Q-200	 a) Bake the sample for 155°C dwell time 4hrs/ solder dipping 235°C/ 5sec. b) Steam the sample dwell time 8 hour/ solder dipping 215°C/ 5sec. c) Steam the sample dwell time 8 hour/ solder dipping 260°C/ 7sec. 	95% coverage min., good tinning and no visible damage	
Temperature cycling AEC Q-200 7.4	1000 cycles, -55 $^\circ\!\mathrm{C}$ ~ +125 $^\circ\!\mathrm{C}$, dwell time 30min maximum.	J: Δ R/R max. ±(1.0%+1m Ω) F: Δ R/R max. ±(0.5%+1m Ω) No visible damage	
Moisture Resistance MIL-STD-202 method 106	65±2°C, 80~100% RH, 10 cycles, 24 hours/ cycle	J: Δ R/R max. ±(1.0%+0.5m Ω) F: Δ R/R max. ±(0.5%+0.5m Ω) No visible damage	
Bias Humidity MIL-STD-202 method 103	1000+48/-0 hours; 85°C, 85% RH, 10% of operation power	J: \triangle R/R max. ±(3.0%+0.5m Ω) F: \triangle R/R max. ±(1.0%+0.5m Ω) No visible damage	
Operational Life MIL-STD-202 method 108	1000+48/-0 hours; specified rated power at 125±2°C	J: Δ R/R max. ±(3.0%+0.5m Ω) F: Δ R/R max. ±(1.0%+0.5m Ω) No visible damage	
High Temperature Exposure MIL-STD-202 Method 108	1000+48/-0 hours; without load in a temperature chamber controlled 125±3°C	J: Δ R/R max. ±(3.0%+0.5m Ω) F: Δ R/R max. ±(1.0%+0.5m Ω) No visible damage	
Board Flex AEC-Q200-005	Resistors mounted on a 90mm glass epoxy resin PCB(FR4),bending once 2mm for 60sec.	J: Δ R/R max. ±(1.0%+1m Ω) F: Δ R/R max. ±(0.5%+1m Ω) No visible damage	
Terminal strength AEC-Q200-006	Pressurizing force: 1Kg, Test time: 60±1sec.	No remarkable damage or removal of the terminations	
Thermal shock MIL-STD-202 method 107	Test –55 to 155 $^\circ C/$ dwell time 15min/ Max transfer time 20sec 300cycles	J: Δ R/R max. ±(1.0%+0.5m Ω) F: Δ R/R max. ±(0.5%+0.5m Ω) No visible damage	

ESD	Test contact 1KV.	Δ R/R max. ±(1%+0.5m Ω)	
AEC-Q200-002		No visible damage	
Mechanical Shock		Within product specification tolerance and	
MIL-STD-202	Velocity change:12.3ft/sec. Three shocks in each direction, total 18 shocks.	no visible damage.	
method 213			
Vibration	Test 5g's for 20 min., 12 cycles each of 3 orientations.	No visible damage.	
MIL-STD-202			
method 204			
Resistance to Solvents :		No superficial defect on marking,	
MIL-STD-202		encapsulation, coating, appearance.	
WIIL-51D-202		Electrical characteristics within products	
Method 215	-	specification and tolerance. Inspect at 3X max. for marking, inspect at 10X for part	
		damage.	
External Visual		No visual damage and refer WTC marking	
MIL-STD-883	marking and workmanship	code.	
method 2009			
Physical Dimension	Verify physical dimensions(L, W, T, Tb, Tt)	Within the specified tolerance for WTC.	
JESD22			
method JB-100			

PACKAGING


Plastic Tape specifications (unit :mm)

Symbol	А	В	W	F	E
Dimensions	6.75±0.20	3.50±0.20	12.00±0.30	5.50±0.1	1.75±0.10

Symbol	P1	P0	ΦD	Т
Dimensions	4.00±0.10	4.00±0.10	$\Phi 1.50^{+0.1}_{-0.0}$	Max. 1.2

Reel dimensions

Symbol	А	В	С	D
(unit : mm)	Φ178.0±2.0	Φ 60.0±1.0	13.0±0.2	14.0±0.2

Taping quantity

- Chip resistors 4,000 pcs per reel.