PSA

50V,100V,500V,1KV,2KV Hi-K CERAMIC DISC CAPACITOR FOR DOWN SIZE PRODUCT

POE-D04-00-E-11

Ver: 11 Page: 1 / 16

PRODUCT SPECIFICATION

PRODUCT: CERAMIC DISC CAPACITOR

50V, 100V, 500V, 1KV, 2KV HI-K

TYPE: CERAMIC

CAPACITOR DOWN SIZE PRODUCT

CUSTOMER:	横所有侵勢
DOC. NO.	POE-D04-00-E-11
Ver.:	PSA III
COPYRIGH	Seen Seen
API	PROVED BY CUSTOMER
	ECHNOLOGY CORPORATION. RES

VENDOR:	
□ WALSIN TECHNOLOGY CORPORATION	
566-1, KAO SHI ROAD,YANG-MEI	
TAO-YUAN, TAIWAN	8
☐ PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD.	VANISN
NO.277,HONG MING ROAD,EASTERN SECTION,	
GUANG ZHOU ECONOMIC AND TECHNOLOGY	
DEVELOPMENT ZONE,CHINA	
MAKER:	
☐ PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD.	POFfectronic POE
NO.277,HONG MING ROAD,EASTERN SECTION,	
GUANG ZHOU ECONOMIC AND TECHNOLOGY	
DEVELOPMENT ZONE,CHINA	

 $50V,\!100V,\!500V,\!1KV,\!2KV~\text{Hi-K}~\text{CERAMIC}~\text{DISC}~\text{CAPACITOR}~\text{FOR}~\text{DOWN}~\text{SIZE}~\text{PRODUCT}$

POE-D04-00-E-11

Ver: 11 Page: 2 / 16

Record of change

Date	Version	Description	page
2008.6.3	1	1. D15-00-E-09 (before) → POE-D04-00-E-01 (1 st edition)	
2008.8.22	2	Revised diameter	5-7
		2. Complete lead code	16-19
		3. Add last SAP code "H" for halogen and Pb free, epoxy resin	8
2008.12.12	3	1.Complete lead code of SAP P/N	3-7
		2. Page layout adjustment.	
		3. Added marking when the coating resin is Halogen and Pb free Epoxy.	
2009.8.5	4	1. Change PSA & POE logo to Walsin & POE logo.	
2011/8/24	5	1. Delete the definition about "Old Part No."	5-6
		2. Review the diameter dimension code of "Z5U 1KV 332/362" from 060 to be 070.	7
		3. Delete the Part No. of "Z5U 50V/100V 223".	
			7
2011/11/25	6	1. Review the item Y5P/Z5U/Z5V	7-8
		2. Add the Y5U temperature characteristic	4-15
2012/11/06	7	1. Revise the temp.(TCC): Y5P(-25°C to 85°C/ to 125°C) & Cap. Change($\pm 10\% / \pm 35\%$)	4
		2. Review the OP temp, for Y5P: Y5P: -25° C $\sim +105^{\circ}$ C (INCLUDING CAPACITOR'S	12-13
		SELF-HEATING MAX.+20°C)	
2013/5/6	8	1. Review the Lead diameter φ from 0.60 +/-0.06mm to 0.55+/-0.05mm	6,9
		2. Review the " $D\Phi \le 6.0$ mm shall be omitted." to " $D\Phi \le 0.0$ 0 shall be omitted."	8
		3. Review the Solderability temperature from 255(+5/-0)°C to 245±5°C ., Solderability	
		time from 2 ± 0.5 s to 5 ± 0.5 s,	12
2013/10/18	9	Review the packing specification	10
2015/8/4	10	1. Review the temperature range: Y5P(-25°C to+105°C)Change (-25°C to+125°C)	11
		2. review the high temperature loading: FOR $1000(+48/-0)$ HOURS AT $85 \pm 2^{\circ}$	13
		(FOR Y5U, Z5U, Z5V) / AT $105 \pm 3^{\circ}$ (ONLY FOR Y5P) AND THEN DRIED FOR	
		$12\sim24$ HOURS AND MEASURED.Change FOR $1000(+48/-0)$ HOURS AT $85\pm2^{\circ}$ C	
		(FOR Y5U, Z5U, Z5V) / AT 125 \pm 3°C (ONLY FOR Y5P) AND THEN DRIED FOR	
		$12\sim24$ HOURS AND MEASURED.	
2015/11/5	11		5-6
2013/11/3	11	1. Review the Available lead code of Lead Configuration.	3-6 7-8
		2. Modify the contents of the use of epoxy resin for 1KV products	12-13
		3. Review the Specification and test method	14
		4. Review 8. Cautions & notices	16
		5. Review 9. Drawing of internal structure and material list	10

 $50V,\!100V,\!500V,\!1KV,\!2KV~\text{Hi-K}~\text{CERAMIC}~\text{DISC}~\text{CAPACITOR}~\text{FOR}~\text{DOWN}~\text{SIZE}~\text{PRODUCT}$

POE-D04-00-E-11

Ver: 11 Page: 3 / 16

Table of Contents

No.	Item	Page
1	Part number for SAP system	4/16
2	Mechanical	5/16~6/16
3	Capacitance value vs. rated voltage, product diameter	7/16~8/16
4	Marking	8/16
5	Taping Format	9/16
6	Packing specification	10/16
7	Specification and test method	11/16~13/16
8	Cautions & Notices	14/16~15/16
9	Drawing of internal structure and material list:	16/16
	新有意义	
	(A)	
	# PSA P	
	S S PASSIVE SYSTEM ALLIANCE S S	
	· · · · · · · · · · · · · · · · · · ·	
	Technology Corporation All Maries	

POE-D04-00-E-11

Ver: 11 Page: 4 / 16

1. Part number for SAP system(total eighteen code):

• Temperature characteristic:

Code	YU(Y5U)	YP(Y5P)	ZU(Z5U)	ZV(Z5V)
Temperature range	-25°C to +85°C	-25°C to +85°C / 85°C to +125°C	+10°C t	o +85°C
Cap. change	-56%~+22%	±10% / ±35%	-56%~+22%	-82%~+22%

2 Rated voltage (Vdc):

Voltage	50V	100V	500V	1000V	2000V
Code	500	101	501	102	202

SCapacitance(pF):

1 1 /					
Capacitors (pF)	100	470	1000	2200	4700
Code	101	471	102	222	472

4 Capacitance tolerance : $K=\pm 10\%$ \ $M=\pm 20\%$ \ Z=+80% - 20%

6 Nominal body diameter dimension (Ref.to page.7~8 Dφ Code spec.).

6 Code of lead type: Please refer to Item "2.Mechanical".

Packing mode and lead's length (identified by 2-figure code)

Taping Code	Description
AN	Ammo / Pitch of component:12.7 mm

Bulk Code	Description
3E	Lead's length L: 3.5mm
04	Lead's length L: 4.0mm
4E	Lead's length L: 4.5mm
20	Lead's length L: 20mm

SYSTEM ALLIANCE

8 Length tolerance

Code	Description
A	±0.5 mm(Only for short kink lead code "D / X / H")
В	±1.0 mm
С	Min.
D	Taping special purpose

Pitch

Code	Description	Code	Description
5	5.0±0.8mm (For Bulk)	7	7.5 ±1 mm
5	5.0+0.8mm-0.2mm (For Taping)	0	10.0 ±1mm
2	2.5 ±0.8 mm		

Coating code

Code	Description	
P	Phenolic resin -Pb free	
A	Halogen free and Pb free, phenolic resin	
В	Epoxy Resin, Pb free	
Н	Halogen free and Pb free, epoxy resin	

POE-D04-00-E-11

Ver: 11 Page: 5 / 16

2. Mechanical:

Available lead code: (unit: mm)

Available lea	ad code: (unit: 1		T 12 (2	A 91 1 1 4 7		
Lead type	SAP P/N (13-17) digits	Pitch (F)	Lead length (L)	Available rated voltage	Packing	Lead configuration
	B20C2	2.5 ± 0.8	20 MIN.	50V		D max. T max.
	B20C5	5.0 ± 0.8	20 MIN.			
	B20C6	6.4 ± 1.0	20 MIN.		Bulk	
Lead style: B	B20C7	7.5 ± 1.0	20 MIN.	50V,500V, 1KV,2KV		()
Straight long	B20C0	10 ± 1.0	20 MIN.			
lead	BAND5	5.0 +0.8 -0.2	Taping Spec.		T. A	* TF - T T T T T T T T T T T T T T T T T
	BAND2	2.5 ± 0.8	(Ref.to page.9)	50V	Tap. Ammo	Ø d L
	L05B2	2.5 ± 0.8	5.0 ± 1.0			D max. T max.
	L4EB5	5.0 ± 0.8	4.5 ± 1.0			
	L05B5	5.0 ± 0.8	5.0 ± 1.0			
Lead style: L	L05B6	6.4 ± 1.0	5.0 ± 1.0			()
Straight short	L4EB7	7.5 ± 1.0	4.5 ± 1.0	50V/500V/ 1EV/ 2EV/	Bulk	. \ \ \ \ \
lead	L05B7	7.5 ± 1.0	5.0 ± 1.0	50V,500V, 1KV, 2KV		• +
	L4EB0	10 ± 1.0	4.5 ± 1.0			1 F - T 1
	L05B0	10 ± 1.0	5.0 ± 1.0	自信		Ø d + L
	H3EA5	5.0 ± 0.8	3.5 ± 0.5	R'S		
	H04A5	5.0 ± 0.8	4.0 ± 0.5	份份太平	-1	
	H4EB5	5.0 ± 0.8	4.5 ± 1.0	习念	Tal	
	H05B5	5.0 ± 0.8/	5.0 ±1.0	F	156	
	H20C5	5.0 ± 0.8	20 MIN.	∇	E	T may
	H3EA7	7.5 ± 1.0	3.5 ± 0.5			D max.
T 1 . 1 . TT	H04A7	7.5 ± 1.0	4.0 ± 0.5			
Lead style: H	H4EB7	7.5 ± 1.0	4.5 _A ± 1.0 _E	50V,500V, 1KV, 2KV	Bulk	()
Inside kink	H05B7	7.5 ± 1.0	5.0 ±1.0			1 × 1 ×
lead	H20C7	7.5 ± 1.0	20MIN	<u> </u>		5.0 max.
	H3EA0	10 ± 1.0	3.5 ± 0.5		24	
	H04A0	10 ± 1.0	4.0 ± 0.5	970		[ød+[+ <u> </u>
	H4EB0	10 ± 1.0	4.5 ± 1.0	MODY COM		
	H05B0	10 ± 1.0	5.0 ±1.0	PARTICINI, HIS		
	H20C0	10 ± 1.0	20 MIN.	A COBBOKHIIA.		
	HAND5	5.0 +0.8 -0.2	Taping SPEC. (Ref.to page.9)	50V,500V, 1KV, 2KV	Tap. Ammo	
	X3EA5	5.0±0.8				¥1
	X3EA7	7.5±1.0	3.5 ± 0.5			D max.
	X3EA0	10±1.0				
Lead style: X	X04A5	5.0±0.8				()
Outside kink	X04A7	7.5±1.0	4.0 ± 0.5	50V,500V, 1KV, 2KV	Bulk	
lead	X04A0	10±1.0	1			i i i i i i i i i i i i i i i i i i i
	X05B5	5.0±0.8				
	X05B7	7.5±1.0	5.0 ± 1.0			"THE FOR THE PORT OF THE PORT
	X05B0	10±1.0	2.0 _ 1.0			[
	AUJDU	10±1.0				

POE-D04-00-E-11

Ver: 11 Page: 6 / 16

Lead type	SAP P/N (13-17) digits	Pitch (F)	Lead length (L)	Available rated voltage	Packing	Lead configuration
	D04A5	5.0±1.0				D max. ,T max,
	D04A7	7.5±1.0	4.0 ± 0.5			
Lead style: D	D04A0	10±1.0	3.5 ± 0.5		D.,11.	
	D3EA5	5.0±0.8		50V,500V, 1KV, 2KV	Bulk	
Vertical kink	D3EA7	7.5±1.0				
short lead	D3EA0	10±1.0				
	DAND5	5.0 ^{+0.8} -0.2	Taping SPEC. (Ref.to page.9)		Tap. Ammo	
	M05B5	5.0 ± 0.8				D max. T max.
	M05B7	7.5 ± 1.0	5.0 ± 1.0			
Lead style: M	M05B0	10 ± 1.0				
Double	M04B5	5.0 ± 0.8		50V,500V, 1KV, 2KV	Bulk	
outside kink	M04B7	7.5 ± 1.0	5	30 v,300 v, 1K v, 2K v	Duik	i de la companya de l
lead	M04B0	10 ± 1.0	4.0 ± 1.0			F Ø d

 $[\]bigstar$ Lead diameter ϕ = 0.55 +/-0.05 mm

※ e (Coating **extension** on leads):

For straight lead style: 1.5mmMax when the rated voltage is 50Vdc & 100Vdc;

2.0mmMax when the rated voltage is 500Vdc and 1KVdc;

3.0mmMax when the rated voltage is 2KVdc.

For kink lead style: not exceed the kink.

%When Dφ≥11mm, only for bulk, but Dφ≤10mm can do Bulk or Taping.

^{*} Phenolic resin coating for 50V/500V product; Phenolic resin or Epoxy resin coating for 1KV product; Epoxy resin coating for 2KV product.

 $50V,\!100V,\!500V,\!1KV,\!2KV~\text{Hi-K}~\text{CERAMIC}~\text{DISC}~\text{CAPACITOR}~\text{FOR}~\text{DOWN}~\text{SIZE}~\text{PRODUCT}$

POE-D04-00-E-11

Ver: 11 Page: 7 / 16

3. Capacitance value vs. rated voltage, product diameter:

T.C.						Y5	P (C	LASS	п, т	Tempe	eratur	e:-25	℃~+8	35℃,	T.C.C	::±10	% &	+85°C	C~+12	25°C,′	T.C.C	::±35	%)					
Rate voltage			50	V, 10	OV							500V							1 F	ζV					2H	ζV		
Dφ (Code)	040	050	060	070	080	090	100	040	050	060	070	080	090	100	110	130	050	060	070	080	100	120	060	080	090	100	130	140
D max. (mm)	4.5	5.5	6.5	7.5	8.5	9.5	11.0	4.5	5.5	6.5	7.5	9.0	10.0	11.0	12.0	14.0	6.0	7.0	8.0	9.0	11.0	13.0	7.5	9.5	10.5	11.5	14.5	15.5
T max. (mm)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
100	101							101									101						101					
120	121							121									121						121					
150	151							151									151						151					
180	181							181									181						181					
200	201							201									201						201					
220	221							221									221						221					
240	241							241									241						241					
270	271							271									271						271					
330	331							331									331						331					
390	391							391									391						391					
470	471							471									471						471					
560	561							561									561						561					
680	681							681										681					681					
820	821								821									821						821				
1000	102								102									102						102				
1200		122								122									122						122			
1500		152								152									152						152			
1800		182									182		_							182					182			
2000		202									202	1.1	- 1	_		1-				202					202			
2200		222									222	FI	7	7		70				222					222			
2700			272								VOS	272				1	13%	5			272					272		
3000			302							/ 1	TR	302		J) L	1/1		12				302							
3300			332							NY	17	(A	332	1 X	IЛ			5/	1		332						332	
3900				392						N	Y 1	,	392			N.	R	(J	7			392					392	
4700				472					14	Vm	1.	\mathbb{R}^{\prime}		472			777		17			472						472
5000					502				177	1///	公公			502			T.	- '\	70									
5600					562				/ *	7 ,	10	1		562				1	-									
6800						682				1.0	ti l				682		1	-11										
8200							822			1	H^{-1}					822		1										
10000							103								3 /	103												
Packing		Tapi	ng or l	Bulk	•	BU	LK	Taping or Bulk Bulk			ılk	Taping or Bulk Bulk					ulk Taping or Bulk Bulk											
Coating								henolic Resin			Phenolic Resin or Epoxy Resin																	
										-																		

T.C.						13	Z5U	(CLA	SS Ⅱ,	Temp	eratur	e: +10	°C~+8	5℃, T.	C. C.: -	+22~-5	56%)					
Rate voltage			50V,	100V		13	2	4	500V				45	1KV	5	/			2K	V		
Dφ(Code)	040	050	060	070	080	100	040	050	060	070	090	050	060	070	090	100	060	070	080	090	110	130
D max. (mm)	4.5	5.5	6.5	7.5	8.5	10.5	4.5	5.5	6.5	7.5	9.5	6.0	7.0	8.0	10.0	11.0	7.5	8.5	9.5	10.5	12.5	14.5
T max. (mm)	3.5	3.5	3.5	3.5	3.5	3.5	4.0	4.0	4.0	4.0	4.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
1000								102	120		чъ	102	100	214			102					
1200								122	THAI	1100	CAR	122	1 11100				122					
1500								152	2771	11/17	THR	152	10					152				
1800								182	-	-001	0011	182										
2000	202							202				202										
2200	222							222				222						222				
2700	272							272						272					272			
3000	302													302								
3300	332								332					332					332			
3600	362								362					362						362		
3900	392								392					392						392		
4700	472									472				472						472		
5000		502												502								
5600										562											562	
6800										682					682						682	
8200			822													822						822
10000				103							103					103						103
Packing						-				Tapi	ng or B	ulk	-		-						Bu	ılk
Coating					Phe	nolic R	esin					Phen	olic Re	sin or E	poxy R	esin			Epoxy	Resin		

POE-D04-00-E-11

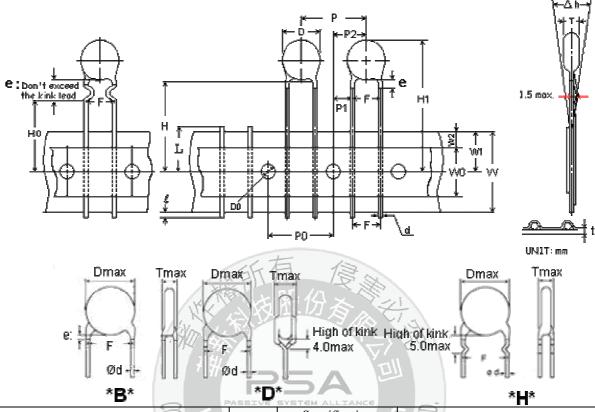
Ver: 11 Page: 8 / 16

T.C.						Y	5U (C	LASS	∏, Ten	nperatu	ıre: -25	5°C ~+8	5℃, T	.C.C.:	+22~-56	6%)					
Rate voltage		50	OV,100	V				500V					1KV					2F	(V		
Dφ(Code)	050	060	070	080	100	060	070	080	090	100	050	060	070	090	110	060	070	080	090	110	140
D max. (mm)	5.5	6.5	7.5	8.5	10.5	6.5	7.5	8.5	9.5	10.5	6.0	7.0	8.0	10.0	12.0	7.5	8.5	9.5	10.5	12.5	15.5
T max. (mm)	3.5	3.5	3.5	3.5	3.5	4.0	4.0	4.0	4.0	4.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
1000						102					102					102					
1200											122					122					
1500											152						152				
2000	202																				
2200	222					222						222						222			
2700	272						272						272					272			
3000	302																				
3300	332						332						332						332		
3600	362																				
3900	392						392						392						392		
4700	472							472						472					472		
5000	502																				
5600																				562	
6800									682					682							
8200			822																		
10000			103							103	03 103										103
Packing		•		•	•		Taping	or Bull	ζ.		Bulk					ulk Taping or Bulk Bulk					
Coating					Phenoli	ic Resin	ı				Phe	enolic R	lesin or	Epoxy :	Resin			Epoxy	Resin	•	

				13. K	1	3			
T.C.			Z5V (CLAS	SS II , Tempera	ture: +10°C~	+85℃, T.C.C.: +22~	82%)		
Rate voltage		50V	/, 100V	SEE THE RESERVE TO TH	500V	1/1/23	1KV		2KV
Dφ(Code)	050	060	070	080	080	060	080	100	120
D max. (mm)	5.5	6.5	7.5	8.5	9.0	7.0	9.0	11.0	13.5
T max. (mm)	3.5	3.5	3.5	3.5	4.0	4.5	4.5	4.5	4.5
1000	102		1777W/ ts			(7)			
1200	122		44						
1500	152		1			152			
1800	182					182			
2000	202					202			
2200	222		8	PASSIVE S	YSTEM ALLI	222	5		
2700	272		12			272	-		
3000	302		220			302			
3300	332		95 0			2			
3600	362			2		(O) (K)			
3900	392		1/1/2	1001			392		
4700	472		3//	no		11/41	472		
5000			10/1	Time	INP!	Oll Hir	502		
10000		103		CELHMOING	103	MI.		103	103
20000			203	TOLUU	LUMPUM				
22000				223					
Packing			•	Taping or	Bulk		<u>"</u>		Bulk
Coating			Phenolic Resin			Phenolic Res	sin or Epoxy I	Resin	Epoxy Resin

4. Marking:

Marking Remarks	(2) B (1) (4) (4) (5) (6)					
(1). Temp. char.	Y5P: Be marked "B"; Z5U(Y5U): Be marked "E"; Z5V: Shall be omitted					
(2). Rated capacitance	Identified by 3-Figure Code. Ex. 1000pF→"102", 4700pF→"472"					
	50V&100V Marked with code "" under the rated capacitance.					
(3). Rated voltage	No any marking under the rated capacitance.					
	1000V&2000V Marked with code: 1000V→"1KV", 2000V→"2KV"					
(4). Capacitance tolerance	$K=\pm 10\%$ (for Y5P) $M=\pm 20\%$ (for Z5U&Y5U) $Z=+80\%-20\%$ (for Z5V)					
(5). Manufacturer's identification	on Shall be marked as "♥", but DΦ≤060 shall be omitted.					
(6). Halogen and Pb free	There is a ""marking under the code "V" when the coating resin is Halogen free and Pb free Epoxy.					

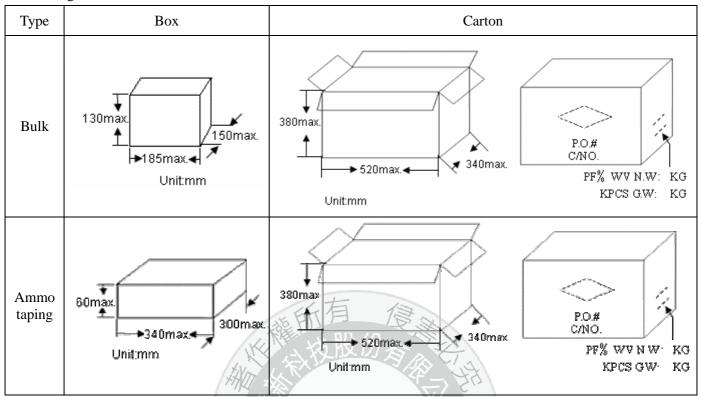

POE-D04-00-E-11

Ver: 11 Page: 9 / 16

5. Taping specifications:

* Lead spacing: **F**=5.0 ^{+0.8}_{-0.2} (**mm**)

• 12.7mm pitch/lead spacing 5.0mm taping
Lead code: *BAND5 & *DAND5 & *HAND5



		-ABBIVE	5 7 5 I EM 7	ALLIANCE	• •
Item	9 5	Symbol	Spec	cification	Remarks
Item	多包	Symbol	Value	Tolerance	Kemarks
Body diameter	35 05	D	*	max.	See Section "3. Capacitance value vs. rated
Body thickness	0,4	T	*	max.	voltage, product diameter".
Lead-wire diameter	Mar	d	0.55	±0.05	57
Pitch of component	12/5/11	P	12.7	±1.0	
Feed hole pitch		// P0	12.7	±0.3	Cumulative pitch erroe:1.0mm/20 pitch
Feed hole center to lead		·/P1///	3.85	±0.7	To be measured at bottom of clinch
Hole center to component center		P2	6.35	±1.3	
Lead-to-lead distance		F	5.0	+0.8,-0.2	
Component alignment, F-R		∆h	0	±2.0	
Tape width		W	18.0	+1.0,-0.5	
Hole-down tape width		W0	11.0	min.	
Hole position		W1	9.0	+0.75,-0.5	
Hole-down tape position		W2	3.0	max.	
Height of component form tape	For straight lead type	Н	20.0	+1.0 -0.5	
center	For kinked lead type	H0	16.0	±0.5	
Component height		H1	32.25	max.	
Lead-wire protrusion		Q	2.0	max.	Or the end of lead wire may be inside the tape.
Food hole diameter		DÔ	4.0	±0.2	
Total tape thickness	•			±0.2	Ground paper:0.5±0.1mm
Length of sniped lead	<u> </u>	L	11.0	max.	
Coating rundown on leads	e		Please refer to	page 6 "e(Coating extension on leads)".	

6. Packing Baggage:

6.1 Packing size:

6.2 Packing quantity:

Packing type	Th	ne code of 14th to15th in SAP P/N	STEM ALLIMPQ (Kpcs/	Box)	Remark
Toning		AN	2.5		Phenolic resin
Taping		AN	1.5		Epoxy resin
Packing type	Lead length	Size code of 10th to 12th in SAP P/N	MPQ (Kpcs/Bag)	Kpcs/Box	Remark
		040~070	1	3	Phenolic resin
		080~100	1	2	Phenolic resin
	Long lead (L≧ 16mm)	050~100	1	2	Epoxy resin
D II		110~120	0.5	1.5	
Bulk		130~140	0.5	1	
		040~060	1	6	
	Short lead	070~080	1	4	
	(L < 16mm)	090~100	1	3	
	,	110~140	1	2	

		Ver: 11
50V,100V,500V,1KV,2KV Hi-K CERAMIC DISC CAPACITOR FOR DOWN SIZE PRODUCT	POE-D04-00-E-11	Page: 11 /
		16

7. Specification and test method:

7.1 SCOPE: THIS SPECIFICATION APPLIES TO HI-K CERAMIC TYPE CAPACITOR.

7.2 TEST CONDITIONS:

UNLESS OTHERWISE SPECIFIED, ALL TESTS SHALL BE OPERATED AT THE STANDARD TEST CONDITIONS OF TEMPERATURE 5°C TO 35°C AND RELATIVE HUMIDITY 45% TO 85%. WHEN FAILS A TEST, RETEST BE OPERATED AT THE CONDITIONS OF TEMPERATURE 25°C \pm 2°C, RELATIVE HUMIDITY OF 60% TO 70% AND BAROMETRIC PRESSURE 860 TO 1060 MBAR.

7.3 HANDLE PROCEDURE: TO AVOID UNEXPECTED TESTING RESULTS FROM OCCURRING, THE TESTED CAPACITOR MUST BE KEPT AT ROOM TEMPERATURE FOR AT LEAST 30 MINUTES AND COMPLETELY DISCHARGED.

7.4 TEST ITEMS ·

7.4 TEST ITEMS :	T	THE CENTRAL PROCEDURE
ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE
APPEARANCE STRUCTURE SIZE	NO ABNORMALITIES	AS STATED IN SECTION 3.
MARKING		AS STATED IN SECTION 4
	BETWEEN TERMINALS: NO ABNORMALITIES	A. BELOW 1KV: 250% RATED VOLTAGE WITH 50mA MAX. CHARGING CURRENT FOR 1~5 SEC. B. 1KV & ABOVE: 200% RATED VOLTAGE WITH 50mA MAX. CHARGING CURRENT FOR 1~5 SEC.
WITHSTAND VOLTAGE	BETWEEN TERMINAL AND	SMALL METALLIC BALLS WITH 1mm DIAMETERS SHALL BE PUT ON A VESSEL AND THE TEST CAPACITOR SHALL BE SUBMERGED EXCEPT 2mm FROM THE TOP OF ITS COMPONENT BODY.
	ENCLOSURE: NO ABNORMALITIES	THE TEST VOLTAGE SHALL BE APPLIED BETWEEN THE SHORT-CIRCUITED TERMINALS AND THE METALLIC BALLS.
		(APPLY 1.3KV DC VOLTAGE BETWEEN TERMINALS AND ENCLOSURE FOR $1\sim5$ SEC)
INSULATION RESISTANCE	10000 ΜΩ ΜΙΝ	INSULATION RESISTANCE SHALL BE MEASURED AT 60±5 SECONDS AFTER RATED VOLTAGE APPLIED. RATED VOLTAGE: 100V = 100V
		500V & ABOVE = 500V
CAPACITANCE	TOLERANCE : K : ±10% M : ±20%	TESTING FREQUENCY: 1 KHZ ± 20% TESTING TEMPERATURE: 25 ± 2°C
erm rerra vez	Z: +80-20%	TESTING VOLTAGE: 1.0~5.0 Vrms
OPERATING TEMPERATURE RANGE	Y5P: -25° C $\sim +125^{\circ}$ C Y5U: -25° C $\sim +85^{\circ}$ C Z5U & Z5V: $+10^{\circ}$ C $\sim +85^{\circ}$ C	
TEMPERATURE RANGE	Y5P: -25° C \sim +125 $^{\circ}$ C (INCLUDII Y5U: -25° C \sim +85 $^{\circ}$ C Z5U & Z5V: +10 $^{\circ}$ C \sim +85 $^{\circ}$ C	NG CAPACITOR'S SELF-HEATING MAX.+20°C)
DISSIPATION FACTOR (D.F)	Y5P : BELOW 2.5% Z5U & Y5U : BELOW 2.5% Z5V : BELOW 5.0%	AS ABOVE STIPULATION OF CAPACITANCE

 $50V,\!100V,\!500V,\!1KV,\!2KV~\text{Hi-K}~\text{CERAMIC}~\text{DISC}~\text{CAPACITOR}~\text{FOR}~\text{DOWN}~\text{SIZE}~\text{PRODUCT}$

POE-D04-00-E-11

Ver: 11 Page: 12 / 16

YENYIN E	DOGE THE CE DE CALED TO A STATE OF	MEGERNA PRO OFFICE
ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE
TEMPERATURE CHARACTERISTIC	CAP. CHANGE: Y5P: WITHIN ± 10%(-25°C to +85°C) & WITHIN ± 35%(85°C to +125°C) Z5U & Y5U: WITHIN -56,+22% Z5V: WITHIN -82,+22%	CAPACITANCE SHALL BE MEASURED AT 25°C. AND CLASSIFIED AS CAP. CHANGE: CLASS Y5P: -25°C ~ +125°C CLASS Y5U: -25°C ~ +85°C CLASS Z5U&Z5V: +10°C ~ +85°C Pre-treatment: Capacitor shall be stored at125±3°C for 1hour.then placed at 100 condition for 24±2hours
TERMINAL	TENSILE STRENGTH : NO BREAKDOWN	WIRE DIA.0.5 M/M, LOADING WEIGHT 0.5KG FOR 10±1 SECONDS WIRE DIA.0.6 M/M, LOADING WEIGHT 1.0KG FOR 10±1 SECONDS
STRENGTH	BENDING STRENGTH : NO BREAKDOWN	WIRE DIA.0.5 M/M, LOADING WEIGHT 0.25 KG WIRE DIA.0.6 M/M, LOADING WEIGHT 0.5 KG (BENDING BACK AND FORTH 90 DEGREE TWICE)
SOLDERABILITY	LEAD WIRE SHALL BE SOLDERED OVER 3/4 OF THE CIRCUMFERENTIAL DIRECTION.	TO COMPLY WITH JIS-C-5102 8.4 SOLDER TEMPERATURE 245±5°C AND DIPPING TIME 5±0.5 SECONDS. FLUX: WEIGHT RATIO OF POSIN 25%
SOLDERING HEAT RESISTANCE	APPEARANCE: NO ABNORMALITIES CAP. CHANGE: Y5P: ±5% MAX Z5U & Y5U: ±15% MAX Z5V: ±20% WITHSTAND VOLTAGE: (BETWEEN TERMINALS) NO ABNORMALITIES	LEAD WIRE OR TERMINALS SHALL IMMERSE UP TO 2.0 M/M FORM BODY. (A) BODY DIA. ≤ 5.0mm: INTO THE MOLTEN SOLDER OF WHICH TEMPERAFURE: 260(+5/-0)°C FOR 3.0±0.5 SECONDS. (B) BODY DIA. > 5.0mm: INTO THE MOLTEN SOLDER OF WHICH TEMPERATURE 260(+5/-0)°C FOR 5~10 SECONDS. THEN LEAVE AT STANDARD TEST CONDITIONS FOR 24±2 HOURS, THEN MEASURED. ※WHEN SOLDERING CAPACITOR WITH A SOLDERING IRON, IT SHOULD BE PERFORMED IN FOLLOWING CONDITIONS. TEMPERATURE OF IRON-TIP: 350~400 °C SOLDERING IRON WATTAGE: 50W MAX. SOLDERING TIME: 3.5 SEC. MAX.
HUMIDITY CHARACTERISTIC (STABLE SITUATION)	APPEARANCE: NO ABNORMALITIES CAP. CHANGE: Y5P: ± 15% MAX Z5U & Y5U: ± 20% MAX Z5V: ± 30% MAX D.F. Y5P: 5% MAX Z5U & Y5U: 5% MAX Z5U & Y5U: 5% MAX INSULATION RESISTANCE: 1000ΜΩ MIN.	CAPACITORS SHALL BE SUBJECTED TO A RELATIVE HUMIDITY OF 90 \sim 95% AT 40±2°C FOR 500(+24/-0) HOURS. THEN DRIED FOR 1 \sim 2 HOURS AND MEASURED.

^{*1&}quot;room condition" Temperature:15~35, Relative humidity: 45~75%, Atmospheric pressure:86~106kPa

 $50V,\!100V,\!500V,\!1KV,\!2KV~\text{Hi-K}~\text{CERAMIC}~\text{DISC}~\text{CAPACITOR}~\text{FOR}~\text{DOWN}~\text{SIZE}~\text{PRODUCT}$

POE-D04-00-E-11

Ver: 11 Page: 13 / 16

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE
	APPEARANCE:	CAPACITORS SHALL BE SUBJECTED TO A RELATIVE
	NO ABNORAMLITIES	HUMIDITY OF 90 \sim 95% AT 40 ± 2°C FOR 500(+24/-0)
	CAP. CHANGE :	HOURS WITH RATED VOLTAGE APPLIED WITH 50mA
	Y5P: ±15% MAX	MAX., THEN DRIED FOR $1\sim2$ HOURS AND MEASURED.
	Z5U & Y5U: ±20% MAX	Pre-treatment:
HUMIDITY	Z5V: ±30% MAX	Capacitor shall be stored at125±3°C for 1hour.then placed at
LOADING	D.F.	1room condition for 24±2hours
	Y5P: 5% MAX	
	Z5U & Y5U : 5% MAX	
	Z5V: 7.5% MAX	
	INSULATION RESISTANCE	
	500 MΩ MIN.	
	APPEARANCE:	CAPACITORS SHALL BE SUBJECTED TO A TEST OF
	NO ABNORMALITIES	(A) BELOW 1KV: 200% RATED VOLTAGE WITH 50mA
	CAP. CHANGE :	MAX.
	Y5P: ±15% MAX	(B) 1KV & ABOVE: 150% RATED VOLTAGE WITH 50mA
	Z5U & Y5U: ±20% MAX	MAX.
HIGH	Z5V: ±30% MAX	FOR 1000(+48/-0) HOURS AT 85 \pm 2°C (FOR Y5U, Z5U,
TEMPERATURE	D.F.	Z5V) / AT 125 \pm 3°C (ONLY FOR Y5P) AND THEN DRIED
LOADING	Y5P: 4% MAX	FOR 12~24 HOURS AND MEASURED.
	Z5U & Y5U: 4% MAX	Pre-treatment:
	Z5V : 7.5% MAX	Capacitor shall be stored at 125±3°C for 1hour.then placed at ¾
	INSULATION RESISTANCE :	1room condition for 24±2hours
	1000 MΩ MIN.	Jology Cork Main
	APPEARANCE:	CAPACITORS SHALL BE SUBJECTED TO:
	NO ABNORMALITIES	$-25\pm3^{\circ}$ C (30±3min) \rightarrow 25°C (3min) \rightarrow 85±3°C (30±3min) \rightarrow
	CAP. CHANGE :	25°C (3min) FOR 5 CYCLE.
	Y5P: ±15% MAX	Pre-treatment:
	Z5U & Y5U: ±20% MAX	Capacitor shall be stored at125±3°C for 1hour.then placed at
TEMPERATURE	Z5V: ±30% MAX	1room condition for 24±2hours
CYCLING	D.F.	
	Y5P: 5% MAX	
	Z5U & Y5U: 5% MAX	
	Z5V : 7.5% MAX	
	INSULATION RESISTANCE :	
	1000 MΩ MIN.	

¾ 1"room condition" Temperature:15~35, Relative humidity: 45~75%, Atmospheric pressure:86~106kPa

		Ver: 11
50V,100V,500V,1KV,2KV Hi-K CERAMIC DISC CAPACITOR FOR DOWN SIZE PRODUCT	POE-D04-00-E-11	Page: 14 /
		16

8. Cautions & notices:

***Application:** DC or Low frequency(30~150Hz) High Voltage circuits. As coupling and decoupling capacitors for such application where higher losses and a reduced.

8.1. Caution (Rating)

I. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional measurement	Vo-p	V _{0-p}	Vp-p	Vp-p	Vp-p

II. Operating Temperature and Self-generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The frequency of the applied sine wave voltage should be less than 150Hz. The applied voltage load (*) should be such that the capacitor's self-generated heat is within 20°C at an atmosphere temperature of 25°C. When measuring, use a thermocouple of small thermal capacity-K of Ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations.

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

III. Fail-Safe

When capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

8.2. Caution (Storage and operating condition)

I. Operating and storage environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed –10 to 40 degrees centigrade and 15 to 85 % for 6 months maximum and use within the period after receiving the capacitors.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

		Ver: 11
50V,100V,500V,1KV,2KV Hi-K CERAMIC DISC CAPACITOR FOR DOWN SIZE PRODUCT	POE-D04-00-E-11	Page: 15 /
		16

8.3.Caution (Soldering and Mounting)

I. Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

II. Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor.

Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element. When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 degrees C. max.

Soldering iron wattage: 50W max.

Soldering time: 3.5 sec. max.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

8.4. Caution (Handling)

Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PROUCT IS USED.

8.5. Notice

8.5.1. Notice (Soldering and Mounting)

Cleaning (ultrasonic cleaning)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min. maximum.

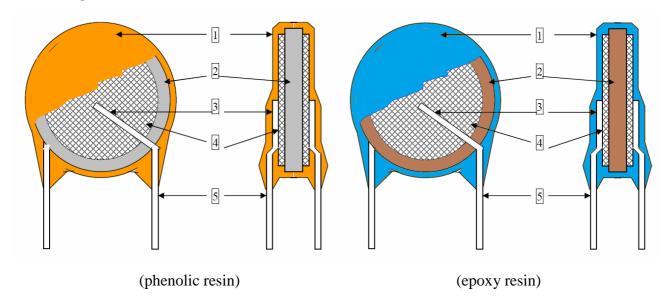
Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

8.5.2. Notice (Rating)

Capacitance change of capacitor

Class 2 series:


Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. So, it is not likely to be suitable for use in a time constant circuit.

Please contact us if you need detailed information.

		Ver: 11
50V,100V,500V,1KV,2KV Hi-K CERAMIC DISC CAPACITOR FOR DOWN SIZE PRODUCT	POE-D04-00-E-11	Page: 16 /
		16

9. Drawing of internal structure and material list:

	纸有 每				
NO.	部位	材質	構成部份	供應商	
NO.	Part name	Material	5 Component	Vendor	
1	Inculation Coating	Phenolic resin	Phenolic resin, Filler, Pigment	Namics	
1 Insulation Coating		Epoxy resin	Epoxy resin, SiO2, TiO2	Kai Hua	
			דוו	Hua Xing	
2	Dielectric Element	Ceramic	PS ABaTiO3	Wang Feng	
		PASSI	VE SYSTEM ALLIANCE	Fenghua	
3	Solder	Tin-silver	Sn97.5-Ag2.5	Huajun	
3	Soluci	1411-511701	Sil)1.3-Ag2.3	Haili	
4	Electrodes	Ag	Silver, Glass frit	Daejoo	
4	Electrodes	(Ag	Shver, Glass the	Xinguang	
5	Leads wire	Tinned copper	Substrate metal:Fe&Cu	Hengtai	
3	Leaus wife	clad steel wire	Surface plating:Sn 100%	Wuhu Taililai	
TOTOL CORPORA					

POE-D05-00-E-10

Ver:10

Page: 1 / 14

PRODUCT SPECIFICATION

PRODUCT: CERAMIC DISC CAPACITOR

TYPE: 3KV HI-K CERAMIC CAPACITOR

CUSTOMER:

DOC. NO.: POE-D05-00-E-10

Ver.: 10

APPROVED BY CUSTOMER

■ WALSIN TECHNOLOGY CORPORATION

566-1, KAO SHI ROAD,YANG-MEI TAO-YUAN, TAIWAN

2. PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD.

NO.277,HONG MING ROAD,EASTERN SECTION, GUANG ZHOU ECONOMIC AND TECHNOLOGY DEVELOPMENT ZONE,CHINA

MAKER: PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD.

NO.277,HONG MING ROAD,EASTERN SECTION, GUANG ZHOU ECONOMIC AND TECHNOLOGY DEVELOPMENT ZONE,CHINA

OF

POE-D05-00-E-10

Ver:10

Page: 2 / 14

Record of change

Record of change				
Date	Ve	Description	page	
	rsio			
2008.6.3	n	1 E12 00 E 06(1-f-m)		
		1. E13-00-E-06(before) → POE-E05-00-E-01(1 st edition)		
2008.8.22	2	1. Revised diameter as below:		
		Before After		
		YP302272X140* not available	6	
		YP302332X140* not available		
		YP302362X150* not available		
		YP302392X150* not available		
		YP302472X170* not available		
			13-14	
		2. Remove H (inside kink lead) lead type for 3 KV.	2	
		3.Add last SAP code "H" for halogen and Pb free, epoxy resin.		
2008.12.12	3	1. Complete the 13 th to 17 th codes of SAP P/N.	4-5	
		2. Page layout adjustment.		
		3. Added Marking when the coating resin is Halogen and Pb free Epoxy.		
2009.8.19	4	1.Change PSA & POE logo to Walsin & POE logo.		
2010/9/9	5	1. Review "but Dφ≤6.0 mm shall be omitted." To "but when the code of 7		
		body diameter dimension ≤060 shall be omitted."	_	
	6	Add date code on marking (item 7~12).		
2013/5/6	6	 Review the Lead diameter φ from 0.60 +/-0.06mm to 0.55+/-0.05mm Review the Solderability temperature from 255(+5/-0)°C to 245±5°C. 	5,6,8	
		Solderability time from 2 ± 0.5 s to 5 ± 0.5 s.	10	
		2010112011, 11101121011010101		
2013/10/18	7	Review the packing specification	11	
2012/10/10	,	2. Delete Z5U 3KV 822/103		
		1. Review the temp range:Y5P(-25° C $\sim +85^{\circ}$ C)Change(-25° C $\sim +125^{\circ}$ C)	9	
2015/0/4	0	2. review the high temperature loading: FOR $1000(+48/-0)$ HOURS AT $85 \pm 2^{\circ}$ C	11	
2015/8/4	8	AND THEN DRIED FOR 24±2 HOURS AND MEASURED.Change FOR 1000(+48/-0) HOURS AT 125 ± 2°C AND THEN DRIED FOR 24±2 HOURS		
		AND MEASURED.		
		1. Add the YV(Y5V) type	4,6	
2015/11/25	9	 Delete the definition about "Old Part No." Review 4. Marking 	7 7	
2013/11/23	7	4. Review 6. Specification and test method:	9,10,11	
		5. Review 9. Drawing of internal structure and material list	14	
2016/3/3	10	1. Review the Available lead code of Lead Configuration.	5	
0 = 0, 0, 0		2. Review 6. Specification and test method(add Pre-treatment):	9-11	

POE-D05-00-E-10

Ver:10

Page: 3 / 14

Table of Contents

1 Part number for SAP system 2 Mechanical 3 Cap. Value vs. Rate voltage, product diameter & type 4 Marking 5 Taping format 6 Specification and test method 7 Packing specification 8 Notices 9 Drawing of internal structure and material list	Page
3 Cap. Value vs. Rate voltage, product diameter & type 4 Marking 5 Taping format 6 Specification and test method 7 Packing specification 8 Notices	4/14
4 Marking 5 Taping format 6 Specification and test method 7 Packing specification 8 Notices	5/14
5 Taping format 6 Specification and test method 7 Packing specification 8 Notices	6/14
6 Specification and test method 7 Packing specification 8 Notices	7/14
7 Packing specification 8 Notices	8/14
8 Notices	9/14~11/14
	12/14
9 Drawing of internal structure and material list	13/14
	14/14
公有 13	
人类之权区历有《云	
F5A	
Se Sessive system All Tance	
夏 多。	

POE-D05-00-E-10

Ver:10

Page: 4 / 14

1. Part number for SAP system:

<u>YP 302 102 K 090 B 20 C 7 B</u>
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) Temperature Characteristic: YP=Y5P, ZU=Z5U, YU=Y5U, YV=Y5V

(2)Rate Voltage: 302=3KVDC

(3)Rate Capacitance: ex. 221=220pF, 102=1000pF

(4) Tolerance of Capacitance : $K = \pm 10\%$, $M = \pm 20\%$

(5) Nominal body diameter dimension (Ref. to page.6 Dφ Code spec.) .

(6)Lead Style: Refer to "2. Mechanical".

(7)Packing mode and lead length (identified by 2-figure code):

Taping Code	Description
AF	Box and Pitch: 15.0 mm
AM	Box and Pitch: 25.4 mm

	AW
Bulk Code	Description
3E	Lead length: 3.5mm
04	Lead length: 4.0mm
4E	Lead length: 4.5mm
20	Lead length: 20.0mm

(8)Length tolerance:

Code	Description
A	±0.5 mm
	(only for kink lead type)
В	±1.0 mm
С	MIN.
D	Taping special purpose

(9)Lead Pitch:

Code	Description
7	7.5±1 mm
0	10±1 mm

(10)Epoxy Resin Code:

Code	Description
В	Pb free, Epoxy Resin
Н	Halogen and Pb free , epoxy resin.

Page: 5 / 14 3KV Hi-K CERAMIC DISC CAPACITOR POE-D05-00-E-10 Ver:10

2. Mechanical:

Available lead code (Epoxy Resin Coating)- (unit: mm)								
T 1.	SAP P/N	Pitch	Lead Length	D 1:	I 10 6			
Lead type	(13-17)digits	(F)	(L)	Packing	Lead Configuration			
	B20C7	7.5 ± 1.0	20 MIN.	Bulk	D max. T max.			
	B20C0	10 ± 1.0	20 MIN.	Duik				
Lead style: B Straight long	BAFD7	7.5 ± 1.0	Refer to "5. Taping					
lead	BAMD0	10 ± 1.0	format"	Tap. Ammo	Ø d			
	L03B7	7.5 ± 1.0	3.0 ± 1.0		D max. T max.			
	L4EB7	7.5 ± 1.0	4.5 ± 1.0					
T 1 1 T	L05B7	7.5 ± 1.0	5.0 ± 1.0					
Lead style: L	L10B7	7.5 ± 1.0	10.0 ± 1.0		()			
G. 11.1	L03B0	10 ± 1.0	3.0 ± 1.0	Bulk	l , λ ⟨			
Straight short	L4EB0	10 ± 1.0	4.5 ± 1.0		• 1			
lead	L05B0	10 ± 1.0	5.0 ± 1.0		1 1 F 1 1			
	L10B0	10 ± 1.0	10.0 ± 1.0		Ø d			
	X3EA7	7.5 ± 1.0	3.5 ± 0.5		D max. T max.			
	X04A7	7.5 ± 1.0	4.0 ± 0.5					
Lead style: X	X05B7	7.5 ± 1.0	5.0 ± 1.0	2				
2000 50,10 11	X3EA0	10 ± 1.0	3.5 ± 0.5	Bulk	()			
Outside kink	X04A0	10 ± 1.0	4.0 ± 0.5	350	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
lead	X05B0	10 ± 1.0	5.0 ± 1.0	111	× + + + + + + + + + + + + + + + + + + +			
Toda	XAFD7	7.5 ± 1.0	Refer to "5. Taping					
	XAMD0	10 ± 1.0	format"	Tap. Ammo	Ød- -ød -			
	D3EA7	7.5 ± 1.0	3.5 ± 0.5		D max. T max,			
	D04A7	7.5 ± 1.0 7.5 ± 1.0	4.0 ± 0.5		D max.			
T 1 . 1 . D	D3EA0	10 ± 1.0	3.5 ± 0.5	Bulk				
Lead style: D	D04A0	10 ± 1.0	3.3 ± 0.3 4.0 ± 0.5	185	l () h h			
Vertical kink	DAFD7	7.5 ± 1.0	4.0 ± 0.3	012	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
short lead	DINDI	1.5/2/1.0	470logy		, with the second secon			
short lead	DAMD0	10 ± 1.0	Taping SPEC.	Tap. Ammo	ød.			
Lead style: H	НЗЕА0	10.0±1.0	3.5±0.5 mm	Bulk	D max.			
Inside kink	HAFD0		•		1\ \			
lead	HAMD0	Refer to "5. Taping format"		Tap. Ammo	SE O D D D D D D D D D D D D D D D D D D			
Lead style: M	M04B7	7.5 ± 1.0	4.0 ± 1.0	Bulk	D max.			
outside kink lead	M04B0	10 ± 1.0	4.0 ± 1.0	Duik	Signal of the state of the stat			

^{*} Lead diameter Φd: 0.55 +/-0.05mm

^{*} e (Coating **extension** on leads): 3.0mmMax for straight lead lead style, not exceed the kink for kink lead.

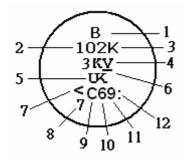
POE-D05-00-E-10

Ver:10

Page: 6 / 14

3. Capacitance value vs. Rate voltage, product diameter:

						8 / 1					F	Photo:		
									Y.5	5P	Z	Z5U	Y	5V
							y lis neter&t			B 221K 3KV	1 5	Earl CX		
T.C.	(CL		Y5P Temperatu .C.C.:±10		Z5U / Y5U 5°C~+85°C, (CLASS II, Temperature: +10°C~+85°C, T.C.C.: +22~-56%)			Y5V (CLASS II, Temperature:-25°C~+85°C,, T.C.C.: +22~-82%)						
Rate voltage			3KV					3KV				3	KV	
D φ (Code)	060	070	090	110	130	060	080	100	110	120	060	080	100	140
D max. (mm)	7.5	8.5	10.5	12.5	14.5	7.5	9.5	11.5	12.5	13.5	7.5	9.5	11.5	15.5
T max. (mm)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
100	101													
150	151						派石	1,	7					
220	221					1 TOPE								
330	331					K IVE	特队	1分之		1.				
470		471			121	\ \ \ \ \ \	X1/-			(2)				
560		561			177/					701				
680			681			HHI				. 1				
750			751			יוואיי			٤	ш				
820			821				SSIVE SYS	TEM ALL	TANCE					
1000			102		8	102					102			
1500				152	爱	J (152		2		152			
2200					222	(O:	222		1	18	222			
3300					(332	202			332	202	
3900 4700						1/5/1/2	Chnol	novi S	392	472			392	
4700 8200				-		20/11/7	2/1010	251	M. H.	472			472	
10000						-1	MANULOGY	CORPUK	11101					102
10000			<u> </u>	<u> </u>										103
φd (mm)		0.55+/-0.05												
Packing		TAPING or BULK												
Coating								Ероху Б	Resin					



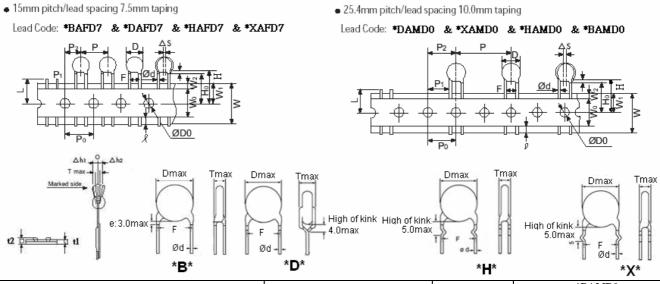
POE-D05-00-E-10

Ver:10

Page: 7 / 14

4 Marking:

-					
1. Temperature	2. Nominal capacitance	3. Capacitance		5. Manufacturer's	\mathcal{C}
characteristic	2. Nominal capacitance	tolerance	voltage	identification	Pb free
Y5P: Be marked "B" Z5U / Y5U: Be marked "E" Y5V: Shall be omitted	Identified by 3-figure code when Cap.≥100pF Ex. 1000pF →"102"	K: ±10% (For Y5P) M: ±20% (For Z5U or Y5V) Z: +80%-20% (For Y5V)	3000V : Be marked "3kV"	Shall be marked as "♥", but when the code of body diameter dimension ≤060 shall be omitted.	When the epoxy resin is Halogen and Pb free, there is a "-"marking.
Definition of date	code marking:	纸有 总	7		
7.Supplier of Epoxy	8.No. of test equipment	9.Factory of manufacture	10.Year of manufacture	11.Month of manufacture	12.Week of manufacture by month
<:K-company ,: P-company	1~9: No.1~No.9, J: No.10, K: No.11, L: No.12	C: Factory of POEGZ	1:2011, 2:2012, 3:2013, 4:2014, 5:2015, 6:2016, 7:2017,···	1~9:January~ September, O: October, N: November, D: December	week 1: - week 2: ' week 3: : week 4: ' week 5: ;



POE-D05-00-E-10

Ver:10

Page: 8 / 14

5. Taping format:

POE Part Number	*BAFD7	*DAFD7 *HAFD7 *XAFD7	*BAMD0 *DAMD0 *HAMD0 *XAMD0	
Item	Symbol	Dimensions (mm)	Dimensions (mm)	Dimensions (mm)
Pitch of component	P	15.0	15.0	25.4
Pitch of sprocket	P0	15.0±0.3	15.0±0.3	12.7±0.3
Lead spacing		7.5±1.0	7.5±1.0	10.0±1.0
Length from hole center to component center	P2	7.5±1.5	7.5±1.5	12.7 ± 1.5
Length from hole center to lead	P1	3.75±1.0	3.75±1.0	7.7±1.5
Body diameter	D	See the "3. Capacitance v	alue vs. Rate vo	oltage, product diameter"
Deviation along tape, left or right	$\triangle S$	The statem Alliance U	0±2.0	
Carrier tape width	W	<i>₩</i>	18.0 +1/-0.5	
Position of sprocket hole	W1		9.0±0.5	
Lead distance between the kink and center of sprocket hole	но	ECHNOLOGY CORPORATION, ALLERS	18.0+2.0/-0	18.0+2.0/-0 For: *DAMD0 *HAMD0 *XAMD0
Lead distance between the bottom of body and the center of sprocket hole	Н	20.0+1.5/-1.0		20.0+1.5/-1.0 For: *BAMD0
Protrusion length	l	2.0max (Or the end	of lead wire may	be inside the tape.)
Diameter of sprocket hole	D0		4.0±0.2	
Lead diameter	φd		0.55 +/-0.05	
Total tape thickness	t1		0.6±0.3	
Total thickness, tape and lead wire	t2		1.5 max.	
Deviation across tape	∆h1		2.0 max.	
Deviation across tape	△h2		2.0 max.	
Portion to cut in case of defect	L	11.0 max.		
Hole-down tape width	W0	11.5min		
Hole-down tape distortion	W2		1.5±1.5	
Coating extension on leads	e	3.0 max for straight lead sty	le; Not exceed	the kink leads for kink lead.
Body thickness	T	See the "3. Capacitance v	alue vs. Rate vo	oltage, product diameter"

3KV Hi-K CERAMIC DISC CAPACITOR	POE-D05-00-E-10	Ver:10	Page: 9 / 14	
---------------------------------	-----------------	--------	--------------	--

6. Specification and test method:

6.1 SCOPE: THIS SPECIFICATION APPLIES TO HIGH VOLTAGE CONSTANT, 3KV CERAMIC CAPACITOR.

6.2 TEST CONDITIONS:

UNLESS OTHERWISE SPECIFIED, ALL TESTS SHALL BE OPERATED AT THE STANDARD TEST CONDITIONS OF TEMPERATURE 5°C TO 35°C AND RELATIVE HUMIDITY 45% TO 85%. WHEN FAILS A TEST, RETEST BE OPERATED AT THE CONDITIONS OF TEMPERATURE 25°C \pm 2°C, RELATIVE HUMIDITY OF 60% TO 70% AND BAROMETRIC PRESSURE 860 TO 1060 MBAR.

6.3 HANDLE PROCEDURE: TO AVOID UNEXPECT TESTING RESULTS FROM OCCURING, THE TESTED CAPACITOR MUST BE KEPT AT ROOM TEMPERATURE FOR AT LEAST 30 MINUTES AND COMPLETELY DISCHARGED.

6.4 TEST ITEMS:

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE
APPEARANCE STRUCTURE SIZE	NO ABNORMALITIES	
MARKING		AS ITEM 4.MARKING.
	BETWEEN TERMINALS: NO ABNORMALITIES	2 TIMES OF THE RATED VOLTAGE. TEST VOLTAGE: 6KVDC, 1~5 SEC, WITH 50mA MAX. CHARGING CURRENT
WITHSTAND VOLTAGEN	BETWEEN TERMINAL AND ENCLOSURE : NO ABNORMALITIES	SMALL METALLIC BALLS WITH 1mm DIAMETERS SHALL BE PUT ON A VESSEL AND THE TEST CAPACITOR SHALL BE SUBMERGED EXCEPT 2mm FROM THE TOP OF ITS COMPONENT BODY. THE TEST VOLTAGE SHALL BE APPLIED BETWEEN THE SHORT-CIRCUITED TERMINALS AND THE METALLIC BALLS. (APPLY 1.3KV DC OF RATED VOLTAGE BETWEEN TERMINALS AND ENCLOSURE FOR 1~5 SEC)
INSULATION RESISTANCE	10000 ΜΩ ΜΙΝ	INSULATION RESISTANCE SHALL BE MEASURED AT 60±5 SECONDS AFTER RATED VOLTAGE APPLIED. RATED VOLTAGE: 500VDC
CAPACITANCE	TOLERANCE : K : ±10% M : ±20% Z:+80%-20%	TESTING FREQUENCY : 1 KHZ \pm 20% TESTING TEMPERATURE : 25 \pm 2°C , TESTING VOLTAGE : 1.0 \pm 0.2 VRMS
TEMP. RANGE		5P: -25°C to +125°C / Z5U/Y5U: +10°C to +85°C / 5V -25°C to +125°C
DISSIPATION FACTOR(D.F.)	Y5P: < 2.5% Z5U/Y5U: BELOW 2.5% Y5V: BELOW 5.0%	AS ABOVE STIPULATION OF CAPACITANCE
TEMPERATURE CHARACTERISTIC	CAP. CHANGE: Y5P: WITHIN ± 10% Z5U/Y5U: WITHIN +22,-56% Y5V: WITHIN +22%, -82%	CAPACITANCE SHALL BE MEASURED AT $25^{\circ}\mathbb{C}$. AND CLASSIFIED AS CAP. CHANGE: CLASS $Y5:-25^{\circ}\mathbb{C} \sim +85^{\circ}\mathbb{C}$ CLASS $Z5:+10^{\circ}\mathbb{C} \sim +85^{\circ}\mathbb{C}$ Pre-treatment: Capacitor shall be stored at $125\pm3^{\circ}\mathbb{C}$ for 1 hour. then placed at $125\pm3^{\circ}\mathbb{C}$ 1 hour.

^{** 1&}quot;room condition" Temperature:15~35, Relative humidity: 45~75%, Atmospheric pressure:86~106kPa

POE-D05-00-E-10

Ver:10

Page: 10 / 14

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE
TERMINAL	TENSIBLE STRENGTH : NO BREAKDOWN	WIRE DIA. 0.5mm, LOADING WEIGHT 0.5KG FOR 10±1 SECONDS. WIRE DIA. 0.6mm, LOADING WEIGHT 1.0KG FOR 10±1 SECONDS.
STRENGTH	BENDING STRENGTH : NO BREAKDOWN.	WIRE DIA.0.5 M/M, LOADING WEIGHT 0.25KG WIRE DIA.0.6 M/M, LOAIDNG WEIGHT 0.5KG (BENDING BACK AND FORTH 90 DEGREE TWICE)
SOLDERABILITY	LEAD WIRE SHALL BE SOLDERED OVER 3/4 OF THE CIRCUMFERENTIAL DIRECTION.	TO COMPLY WITH JIS-C-5102 8.4 SOLDER TEMPERATURE 245±5°C AND DIPPING TIME 5±0.5 SECONDS. FLUX: WEIGHT RATIO OF POSIN 25%
	APPEARANCE : NO ABNORMALITIES	LEAD WIRE OR TERMINALS SHALL BE IMMERSED UP TO 2.0 M/M FORM BODY. INTO THE MOLTEN SOLDER OF WHICH
SOLDERING HEAT RESISTANCE	CAP. CHANGE: Y5P: ±5% MAX Z5U/Y5U: ±15% MAX Y5V: ± 20% MAX WITHSTAND VOLTAGE:	TEMPERATURE: 260(+5/-0)°C FOR 5~10 SECONDS.THEN LEAVE AT STANDARD TEST CONDITIONS FOR 4~24 HOURS, THEN MEASURED. **WHEN SOLDERING CAPACITOR WITH A SOLDERING IRON, IT SHOULD BE PERFORMED IN FOLLOWING CONDITIONS. TEMPERATURE OF IRON-TIP: 350~400 °C SOLDERING IRON WATTAGE: 50W MAX.
	(BETWEEN TERMINALS) NO ABNORMALITIES APPEARANCE :	SOLDERING TIME : 3.5 SEC. MAX.
HUMIDITY CHARACTERISTIC (STABLE SITUATION)	NO ABNORMALITIES CAP. CHANGE: $Y5P: \pm 10\% \text{ MAX}$ $Z5U/Y5U: \pm 20\% \text{ MAX}$ $Y5V: \pm 30\% \text{ MAX}$ D.F.: $Y5P: 5\% \text{ MAX}$ $Z5U/Y5U: 5\% \text{ MAX}$ $Z5U/Y5U: 5\% \text{ MAX}$ $INSULATION \text{ RESISTANCE:}$ $1000M \Omega \text{ MIN.}$	CAPACITORS SHALL BE SUBJECTED TO A RELATIVE HUMIDITY OF 90 ~ 95% AT 40±2°C FOR 500(+24/-0) HOURS. THEN DRIED FOR 1~2 HOURS AND MEASURED.
HUMIDITY LOADING	APPEARANCE: NO ABNORAMLITIES CAP. CHANGE: Y5P: ±10% MAX Z5U/Y5U: ±20% MAX Y5V: ±30% MAX	CAPACITORS SHALL BE SUBJECTED TO A RELATIVE HUMIDITY OF 90 \sim 95% AT 40 \pm 2°C FOR 500(+24/-0) HOURS WITH RATED VOLTAGE APPLIED WITH 50mA MAX. THEN DRIED FOR 1 \sim 2 HOURS AND MEASURED.
	D.F.: Y5P: 5% MAX Z5U/Y5U: 5% MAX Y5V: 7.5% MAX INSULATION RESISTANCE: 500 MΩ MIN	Pre-treatment: Capacitor shall be stored at125±3°C for 1hour.then placed at × 1room condition for 24±2hours

 $\frac{1}{7} 1 \text{"room condition" Temperature: } 15\sim35, \text{ Relative humidity: } 45\sim75\%, \text{ Atmospheric pressure: } 86\sim106\text{kPa}$

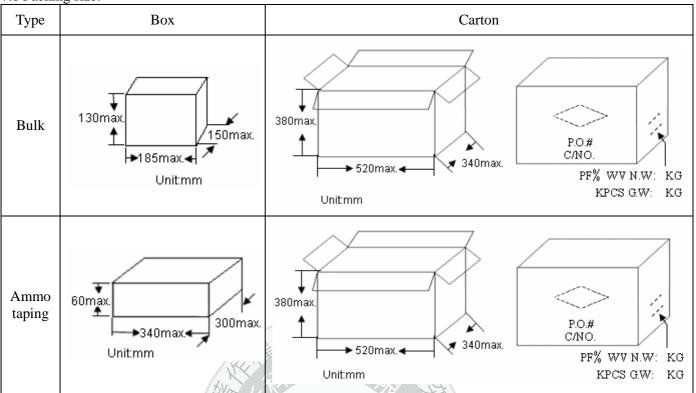
POE-D05-00-E-10

Ver:10

Page: 11 / 14

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE
	APPEARANCE:	CAPACITORS SHALL BE SUBJECTED TO A TEST OF
	NO ABNORMALITIES	150% RATED VOLTAGE WITH 50mA MAX. FOR
	CAP. CHANGE :	$1000(+48/-0)$ HOURS AT $125 \pm 2^{\circ}$ C AND THEN DRIED
	Y5P: ±10% MAX	FOR 24±2 HOURS AND MEASURED.
	Z5U/Y5U: ±20% MAX	
HIGH	Y5V: ± 30% MAX	Pre-treatment:
TEMPERATURE LOADING	D.F. :	Capacitor shall be stored at125±3°C for 1hour.then placed
LOADING	Y5P: 4% MAX	at × 1 room condition for 24±2 hours
	Z5U/Y5U : 4% MAX	
	Y5V : 7.5% MAX	
	INSULATION RESISTANCE: 1000	
	$M\Omega$ MIN.	
	11 =	
	APPEARANCE:	CAPACITORS SHALL BE SUBJECTED TO:
	NO ABNORMALITIES	$-25\pm3^{\circ}\mathbb{C}(30\pm3\mathrm{min})\rightarrow25^{\circ}\mathbb{C}(3\mathrm{min})\rightarrow85\pm3^{\circ}\mathbb{C}(30\pm3\mathrm{min})\rightarrow25$
		°C (3min) FOR 5 CYCLE
	CAP. CHANGE:	
	Y5P: ±10% MAX	Pre-treatment:
	Z5U/Y5U: ±20% MAX	Capacitor shall be stored at 125±3°C for 1 hour, then placed
TEMPERATURE	Y5V: ± 30% MAX	at × 1 room condition for 24±2 hours
CYCLING	D.F.:	
	Y5P: 5% MAX	logy contilling
	Z5U/Y5U : 5% MAX	CORPORATION
	Y5V: 7.5% MAX	VVIII
	INSULATION RESISTANCE:	
	1000 MΩ MIN.	

X 1"room condition" Temperature: 15~35, Relative humidity: 45~75%, Atmospheric pressure: 86~106kPa


POE-D05-00-E-10

Ver:10

Page: 12 / 14

7. Packing Baggage:

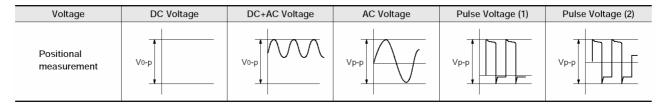
7.1 Packing size:

7.2 Packing quantity:

Packing type		The code of 14th to 15th in SAP P/N SSIVE SYSTEM ALLIANCE	MPQ(K _I	ocs/Box)
Taping		AF AM	1 0.:	5
Packing type	Lead length	Size code of 10th to 12th in SAP P/N	MPQ (Kpcs/Bag)	Kpcs/Box
	Long lead (L≧ 16mm)	060~100	1	2
		110~120	0.5	1.5
		130~170	0.5	1
Bulk	Short lead (L16mm)	060	1	6
Duik		070~080	1	4
		090~100	1	3
	(21011111)	110~140	1	2
		170	0.5	1

POE-D05-00-E-10

Ver:10


Page: 13 / 14

8. Notices:

8.1 Operating Voltage:

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

8.2 Operating Temperature and Self-generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The frequency of the applied sine wave voltage should be less than 100kHz. The applied voltage load (*) should be such that the capacitor's self-generated heat is within 20°C at an atmosphere temperature of 25°C. When measuring, use a thermocouple of small thermal capacity-K of \emptyset 0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations.

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

8.3 Fail-Safe

When capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

8.4 Operating and storage environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 10 to 40 degrees centigrade and 15 to 85 % for 6 months maximum and use within the period after receiving the capacitors.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

8.5 Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

8.6 Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element. When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 degrees C. max.

Soldering iron wattage: 50W max. Soldering time: 3.5 sec. max.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

8.7 Cleaning (ultrasonic cleaning)

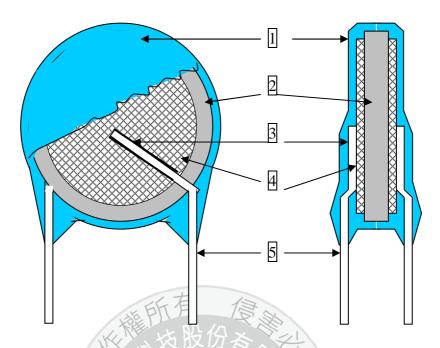
To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min. maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.


POE-D05-00-E-10

Ver:10

Page: 14 / 14

9.Drawing of internal structure and material list:

產品結構圖

Remarks:

No.	Part name	Material	Model/Type	Component
1	Insulation Coating	Epoxy polymer	1.EF-150C 2.EF-150(HF) 3.PCE-210 2.PCE-300(HF)	Epoxy resin、Pigment (Blue / UL 94 V-0 /) The minimum thickness of coating (reinforced insulation) is 0.4mm
2	Dielectric Element	Ceramic	Y5P/Y5U/Z5U/Y5V	BaTiO ₃
3	Solder	Tin-silver	Sn96.5-Ag3-Cu0.5	Sn96.5-Ag3-Cu0.5
4	Electrodes	Ag	1.SP-160PL 2.SP-260PL	Silver · Glass frit
5	Leads wire	Tinned copper clad steel wire	0.55±0.05 mm	Substrate metal: Fe & Cu Surface plating: Sn 100%(3~7μm)