

WF12Q/R_S, WF08Q/R_S, WF06Q/R_S WF04T/U_S

$\pm 1 \%, \pm 0.5 \%, \pm 0.25 \%, \pm 0.1 \%$,

TC50, TC25

Thin Film Pulse Withstanding Chip Resistors (RoHS compliant Halogen Free) Size 1206, 0805, 0603, 0402

*Contents in this sheet are subject to change without prior notice.

FEATURE

1. SMD metal thin film resistor
2. High reliability and stability of 0.5% and below per customer request
3. High performance of TCR: $50 \& 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and below per customer request
4. Low current noise
5. RoHS compliant and lead free
6. Sulfuration resistant against ASTM B-809-95
7. Low resistance with superior pulse withstand ability
8. Meet the requirements of standards of specifications as IEC 60115-14.24.2, test 96 hours at $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$.
9. Meet the requirements of $\mathrm{Q} / \mathrm{GDW} 11179.3-2014$ Class $\mathrm{C}, 10 \mathrm{~ms}$ application of a voltage 10 times RCWV

APPLICATION

- Test equipment
- Measuring instrument
- E-meter
- Smart meter
- Advanced Metering Infrastructure

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive layer that is applied to the top surface of the substrate. The composition of the resistive layer is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.
The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For environmental soldering issue, the outer layer of these end terminations is a Lead-free solder .

Fig 1. Construction of Chip-R WFxx_S

Item	General Specification			
Series No.	WF12 Q/R_S	WF08 Q/R_S	WF06 Q/R_S	WF04 T/U_S
Size Code	$\begin{gathered} 1206 \\ (3216) \end{gathered}$	$\begin{gathered} 0805 \\ (2012) \end{gathered}$	$\begin{gathered} 0603 \\ (1608) \end{gathered}$	$\begin{gathered} 0402 \\ (1005) \end{gathered}$
Resistance Tolerance	$\pm 1.0 \%, \pm 0.5 \%, \pm 0.25 \%, \pm 0.1 \%$			
Resistance Range	$1 \Omega \sim 30 \Omega$	$1 \Omega \sim 20 \Omega$	$1 \Omega \sim 20 \Omega$	$1 \Omega \sim 20 \Omega$
TCR (ppm $/{ }^{\circ} \mathrm{C}$)	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} / \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		$\begin{aligned} & \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}: 4.7 \Omega \sim 20 \Omega \\ & \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}: 1 \Omega \sim 20 \Omega \end{aligned}$	$\begin{aligned} & \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}: 4.7 \Omega \sim 20 \Omega \\ & \pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}: 1 \Omega \sim 20 \Omega \end{aligned}$
Max. Dissipation at $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	1/4W	1/8W	1/10W	1/16W
Max. Operating Voltage	200V	150V	75V	25 V
Max. Overload Voltage	400V	300 V	150V	50V
Operating Temperature	$-55 \sim+155^{\circ} \mathrm{C}$			

QUICK REFERENCE DATA

Note :

1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by

RCWV $=\sqrt{\text { Rated Power } \times \text { Resistance Value or Max. RCWV listed above, whichever is lower. }}$
3. $1 \Omega \sim 20 \Omega$ for $0603 / 0402: T C R ~ \pm 25 \mathrm{ppm} /{ }^{\circ}$ is upon requested.

DIMENSIONS :(unit:mm)

Type	WF12Q/R_S	WF08Q/R_S	WF06Q/R_S	WF04T/U_S
L	3.05 ± 0.15	2.00 ± 0.10	1.55 ± 0.10	1.00 ± 0.10
W	1.55 ± 0.15	1.25 ± 0.10	0.80 ± 0.10	0.50 ± 0.05
A	0.40 ± 0.20	0.25 ± 0.20	0.25 ± 0.15	0.30 ± 0.15
B	0.40 ± 0.20	0.40 ± 0.20	0.30 ± 0.15	0.30 ± 0.15
t	0.55 ± 0.15	0.50 ± 0.15	0.45 ± 0.15	0.35 ± 0.05

MARKING

- 3-digits marking for 0603 size

WFxx_S has same marking rule as WRxx $\pm 1 \%$.

Nominal resistance				Description											
1.E-24 s	series			As 0603 WR06X $\pm 5 \%$.											
2.E-96 series				The 1st two digit codes are referring to the CODE on the table, the 3rd code is the index of resistance value:$\begin{array}{r} Y=10^{-2}, X=10^{-1}, \mathrm{~A}=10^{0}, \mathrm{~B}=10^{1}, \mathrm{C}=10^{2}, \mathrm{D}=10^{3}, \mathrm{E}=10^{4}, \mathrm{~F}=10^{5} \\ \mathrm{EX}: \quad 17.8 \Omega=25 \mathrm{X}, 178 \Omega=25 \mathrm{~A}, 1 \mathrm{~K} 78=25 \mathrm{~B} \\ 17 \mathrm{~K} 8=25 \mathrm{C}, 178 \mathrm{~K}=25 \mathrm{D}, 1 \mathrm{M} 78=25 \mathrm{E} \end{array}$											
3. Remark				There is no marking for the items are not under E-24 and E-96 series											
CODE	R_value														
01	100	13	133	25	178	37	237	49	316	61	422	73	562	85	750
02	102	14	137	26	182	38	243	50	324	62	432	74	576	86	768
03	105	15	140	27	187	39	249	51	332	63	442	75	590	87	787
04	107	16	143	28	191	40	255	52	340	64	453	76	604	88	806
05	110	17	147	29	196	41	261	53	348	65	464	77	619	89	825
06	113	18	150	30	200	42	267	54	357	66	475	78	634	90	845
07	115	19	154	31	205	-43)	274	55	365	67	487	79	649	91	866
08	118	20	158	32	210	44	280	56	374	- 68	499	80	665	92	887
09	121	21	162	33	215	45	287	57	383	69	511	81	681	93	909
10	124	22	165	34	221	46	294	58	392	70	523	82	698	94	931
11	127	23	169	35	226	47	301	- 59	402	71	536	83	715	95	953
12	130	24	174	36	232	-48	309	¢ 60	412	72	549	84	732	96	976

- 4-digits marking for 1206,0805 size

For E24+E96, each resistor is marked with a four digits code on the protective coating to designate the nominal resistance value. For values below $97 \Omega 6$ the R is used as a digit. For values of 100Ω or greater, the first 3 digits are significant; the fourth digit indicates the number of multiple to follow.

Example

RESISTANCE	10Ω	12Ω	100Ω	6800Ω	47000Ω
4-digits marking	$10 R 0$	$12 R 0$	1000	6801	4702

- No marking code for 0402 size

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E192 \& E24 series for resistors with a tolerance of $\pm 1.0 \%, \pm 0.5 \%, \pm 0.25 \%, \pm 0.1 \%$. The values of the E24/E192 series are in accordance with "IEC publication 60063".

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig. 2

Fig. 2 Maximum dissipation in percentage of rated power As a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.
Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).
Electrical connection to the circuit is by individual soldering condition.
The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of $260^{\circ} \mathrm{C}$ for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).
Surface Mount Resistors are tested for solderability at $245^{\circ} \mathrm{C}$ during 5 seconds within lead-free solder bath. The test condition for no leaching is $260^{\circ} \mathrm{C}$ for 30 seconds. Typical examples of soldering profile and condition that provide reliable joints without any damage are given in Fig 3. and Table 1.

Fig. 3 Infrared soldering profile for Chip Resistors

Table 1. Infrared soldering condition for Chip Resistors

Temperature Condition	Less than $3^{\circ} \mathrm{C} /$ second
Average ramp-up rate $\left(217^{\circ} \mathrm{C}\right.$ to $\left.260^{\circ} \mathrm{C}\right)$	Between $60-120$ seconds
Between 150 and $200^{\circ} \mathrm{C}$	Between $60-150$ seconds
$>217^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}+0 /-5^{\circ} \mathrm{C}$
Peak Temperature	Min. 30 seconds
Time within $245^{\circ} \mathrm{C}$	Less than $6^{\circ} \mathrm{C} /$ second
Ramp-down rate $\left(\right.$ Peak to $\left.217^{\circ} \mathrm{C}\right)$	No greater than 480 seconds
Time from $25^{\circ} \mathrm{C}$ to Peak	

CATALOGUE NUMBERS

The resistors have a catalogue number starting with.

WF06	Q/R	XXXX	B	T	L	S
Size code WF12: 1206 WF08: 0805 WF06: 0603 WF04: 0402	Type code Q: TCR $=25 \mathrm{ppm}$ R: TCR $=25 \mathrm{ppm}$ High Power T: TCR = 25 ppm $\mathrm{U}:$ TCR $=25 \mathrm{ppm}$ Normal Power	Resistance code $\begin{aligned} 220 \Omega & =2200 \\ 20 \Omega & =20 \mathrm{R} 0 \\ 4.7 \Omega & =4 \mathrm{R} 70 \end{aligned}$	Tolerance B : $\pm 0.10 \%$ C : $\pm 0.25 \%$ D : $\pm 0.50 \%$ F: $\pm 1.00 \%$	Packaging code T: 7" Reel taping	Termination code L = lead free	Special code S :Pulse withstanding

1. Reeled tape packaging: 8 mm width paper taping.

5,000pcs/reel for WF12_S, WF08_S, WF06_S, 10,000pcs/reel for WF04_S;

TEST AND REQUIREMENTS

TEST	PROCEDURE	REQUIREMENT
		Resistor
DC resistance IEC60115-1 4.5.1	DC resistance values measured	Within the specified tolerance
Temperature Coefficient of Resistance(T.C.R) IEC 60115-1 4.8.4.1	Natural resistance change per change in degree centigrade. $\frac{R_{2}-R_{1}}{R_{1}\left(t_{2}-t_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$ R_{1} : Resistance at reference temperature R_{2} : Resistance at test temperature $t_{1}: 20^{\circ} C+5^{\circ} C-11^{C}$ $\text { t2 : } 125^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1^{\circ} \mathrm{C}$	Refer to " QUICK REFERENCE DATA "
Short time overload (S.T.O.L) IEC60115-1 4.13	Permanent resistance change after a 5second application of a voltage 2.5 times RCWV or the maximum overload voltage specified in the above list, whichever is less. Measure test conclusion after 30 mins	$\Delta \mathrm{R} / \mathrm{R}$ max. $\pm(0.5 \%+0.05 \Omega)$
Resistance to soldering heat(R.S.H) IEC 60115-1 4.18	Un-mounted chips completely immersed for 10 ± 1 second in a SAC solder bath at $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	no visible damage $\triangle R / R \max . \pm(0.2 \%+0.05 \Omega)$
Solderability IEC 60115-1 4.17	1.Un-mounted chips completely immersed for 5 seconds in a SAC solder bath at $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	good tinning (>95\% covered) no visible damage
Temperature cycling IEC 60115-1 4.19	30 minutes at $-55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 2 \sim 3$ minutes at $20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}$ $1^{\circ} \mathrm{C}, 30$ minutes at $+155^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 2 \sim 3$ minutes at $2^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-10$, total 5 continuous cycles	no visible damage $\Delta \mathrm{B} / \mathrm{R}$ max. $\pm(0.5 \%+0.05 \Omega)$
Load life (endurance) IEC 60115-1 4.25.1	$70 \pm 2^{\circ} \mathrm{C}, 1000$ hours, loaded with RCWV or Vmax, 1.5 hours on and 0.5 hours off	$\Delta R / R \max . \pm(0.5 \%+0.05 \Omega)$
Load life in Humidity IEC 60115-1 4.24.2	1000 hours, at rated continuous working voltage in humidity chamber controller at $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and $90 \sim 95 \%$ relative humidity, 1.5 hours on and 0.5 hours off	$\Delta R / R \max . \pm(0.5 \%+0.05 \Omega)$
Bending strength IEC 60115-1 4.33	Resistors mounted on a 90 mm glass epoxy resin PCB(FR4); bending : 3 mm , once for 10 seconds.	$\Delta R / R \max . \pm(0.1 \%+0.05 \Omega)$
Adhesion IEC 60115-1 4.32	Pressurizing force: 5 N , Test time: $10 \pm 1 \mathrm{sec}$.	No remarkable damage or removal of the terminations.
Insulation Resistance Clause 4.6	Apply the maximum overload voltage (DC) for 1minute	$\mathrm{R} \geqq 10 \mathrm{G} \Omega$
Dielectric Withstand Voltage Clause 4.7	Apply the maximum overload voltage (AC) for 1 minute	No breakdown or flashover
Flower of Sulfur ASTM-B-809-95	Sulfur 480 hours, $60^{\circ} \mathrm{C}$, unpowered	$\Delta \mathrm{R} / \mathrm{R} \max . \pm(1 \%+0.05 \Omega)$

PACKAGING

Paper Tape specifications (unit :mm)

Series No.	Tape	A	B	W	D	E
WF12	Paper	3.60 ± 0.20	2.00 ± 0.20	8.00 ± 0.30	3.50 ± 0.20	1.75 ± 0.10
WF08	Paper	2.40 ± 0.20	1.65 ± 0.20	8.00 ± 0.30	3.50 ± 0.20	1.75 ± 0.10
WF06	Paper	1.90 ± 0.20	1.10 ± 0.20	8.00 ± 0.30	3.50 ± 0.20	1.75 ± 0.10
WF04	Paper	1.20 ± 0.10	0.7 ± 0.10	8.00 ± 0.20	3.50 ± 0.05	1.75 ± 0.10

Series No.	F	P0	ΦD	T
WF12	4.00 ± 0.10	4.00 ± 0.10	$\Phi 1.50_{-0.0}^{+0.1}$	Max. 1.0
WF08	4.00 ± 0.10	4.00 ± 0.10	$\Phi 1.50_{-0.0}^{+0.1}$	Max. 1.0
WF06	4.00 ± 0.10	4.00 ± 0.10	$\Phi 1.50_{-0.0}^{+0.1}$	0.65 ± 0.05
WF04	2.00 ± 0.10	4.00 ± 0.10	$\Phi 1.50_{-0.0}^{+0.1}$	0.40 ± 0.05

Reel dimensions

WF12_S, WF08_S, WF06_S, WF04_S

Symbol	A	B	C	D
(unit : mm)	$\Phi 178.0 \pm 2.0$	$\Phi 60.0 \pm 1.0$	13.0 ± 0.2	9.0 ± 0.5

Taping quantity

- Chip resistors 5,000 pcs per reel (WF12_S, WF08_S, WF06_S)
- Chip resistors 10,000 pcs per reel (WF04_S)

PULSE LOAD PERFORMANCE:

Single Pulse

1,000 rectangular pulse amplitudes are applied to the component at intervals of 60seconds, Permissible resistance to be varied by $\pm(0.5 \% R+0.05 \Omega)$.

Continuous Pulse

Continuous load is a pulse period generated by the repetitive rectangular pulse amplitude,
the applied power dissipation is at a rated power of $70^{\circ} \mathrm{C}$.
Permissible resistance to be varied by $\pm(0.5 \% R+0.05 \Omega)$.

